Dissipative measure-valued solutions for general conservation laws
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 683-707.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In the last years measure-valued solutions started to be considered as a relevant notion of solutions if they satisfy the so-called measure-valued – strong uniqueness principle. This means that they coincide with a strong solution emanating from the same initial data if this strong solution exists. This property has been examined for many systems of mathematical physics, including incompressible and compressible Euler system, compressible Navier-Stokes system et al. and there are also some results concerning general hyperbolic systems. Our goal is to provide a unified framework for general systems, that would cover the most interesting cases of systems, and most importantly, we give examples of equations, for which the aspect of measure-valued – strong uniqueness has not been considered before, like incompressible magnetohydrodynamics and shallow water magnetohydrodynamics.

DOI : 10.1016/j.anihpc.2019.11.001
Mots-clés : Young measures, Measure-valued solutions, Hyperbolic systems
Gwiazda, Piotr 1 ; Kreml, Ondřej 2 ; Świerczewska-Gwiazda, Agnieszka 3

1 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland
2 Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, CZ-115 67 Praha 1, Czech Republic
3 Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
@article{AIHPC_2020__37_3_683_0,
     author = {Gwiazda, Piotr and Kreml, Ond\v{r}ej and \'Swierczewska-Gwiazda, Agnieszka},
     title = {Dissipative measure-valued solutions for general conservation laws},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {683--707},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.11.001},
     mrnumber = {4093617},
     zbl = {1447.35209},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2019.11.001/}
}
TY  - JOUR
AU  - Gwiazda, Piotr
AU  - Kreml, Ondřej
AU  - Świerczewska-Gwiazda, Agnieszka
TI  - Dissipative measure-valued solutions for general conservation laws
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 683
EP  - 707
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2019.11.001/
DO  - 10.1016/j.anihpc.2019.11.001
LA  - en
ID  - AIHPC_2020__37_3_683_0
ER  - 
%0 Journal Article
%A Gwiazda, Piotr
%A Kreml, Ondřej
%A Świerczewska-Gwiazda, Agnieszka
%T Dissipative measure-valued solutions for general conservation laws
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 683-707
%V 37
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2019.11.001/
%R 10.1016/j.anihpc.2019.11.001
%G en
%F AIHPC_2020__37_3_683_0
Gwiazda, Piotr; Kreml, Ondřej; Świerczewska-Gwiazda, Agnieszka. Dissipative measure-valued solutions for general conservation laws. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 683-707. doi : 10.1016/j.anihpc.2019.11.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2019.11.001/

[1] Alibert, J.J.; Bouchitté, G. Non-uniform integrability and generalized Young measures, J. Convex Anal., Volume 4 (1997) no. 1, pp. 129–147 | MR | Zbl

[2] Ball, J.M. PDEs and Continuum Models of Phase Transitions, A version of the fundamental theorem for Young measures (Lecture Notes in Phys.), Volume vol. 344, Springer, Berlin (1989), pp. 207–215 (Nice, 1988) | MR | Zbl

[3] Bella, P.; Feireisl, E.; Novotný, A. Dimension reduction for compressible viscous fluids, Acta Appl. Math., Volume 134 (2014), pp. 111–121 | DOI | MR | Zbl

[4] Brenier, Y.; De Lellis, C.; Székelyhidi, L. Jr. Weak-strong uniqueness for measure-valued solutions, Commun. Math. Phys., Volume 305 (2011) no. 2, pp. 351–361 | DOI | MR | Zbl

[5] Březina, J.; Feireisl, E. Measure-valued solutions to the complete Euler system, J. Math. Soc. Japan, Volume 70 (2018) no. 4, pp. 1227–1245 | DOI | MR | Zbl

[6] Březina, J.; Kreml, O.; Mácha, V. Dimension reduction for the full Navier-Stokes-Fourier system, J. Math. Fluid Mech., Volume 19 (2017) no. 4, pp. 659–683 | DOI | MR | Zbl

[7] Christoforou, C.; Galanopoulou, M.; Tzavaras, A.E. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity, Discrete Contin. Dyn. Syst., Ser. B, Volume 39 (2019) no. 11, pp. 6175–6206 | MR | Zbl

[8] Christoforou, C.; Tzavaras, A. Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 1, pp. 1–52 | DOI | MR | Zbl

[9] Dafermos, C.M. Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 325, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[10] Dafermos, C.M.; Hrusa, W.J. Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics, Arch. Ration. Mech. Anal., Volume 87 (1985) no. 3, pp. 267–292 | DOI | MR | Zbl

[11] Debiec, T.; Gwiazda, P.; Łyczek, K.; Świerczewska-Gwiazda, A. Relative entropy method for measure-valued solutions in natural sciences, Topol. Methods Nonlinear Anal., Volume 52 (2018) no. 1, pp. 311–335 | MR | Zbl

[12] Demoulini, S.; Stuart, D.M.A.; Tzavaras, A.E. A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy, Arch. Ration. Mech. Anal., Volume 157 (2001) no. 4, pp. 325–344 | DOI | MR | Zbl

[13] Demoulini, S.; Stuart, D.M.A.; Tzavaras, A.E. Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics, Arch. Ration. Mech. Anal., Volume 205 (2012) no. 3, pp. 927–961 | DOI | MR | Zbl

[14] DiPerna, R.J. Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal., Volume 88 (1985) no. 3, pp. 223–270 | DOI | MR | Zbl

[15] DiPerna, R.J.; Majda, A.J. Oscillations and concentrations in weak solutions of the incompressible fluid equations, Commun. Math. Phys., Volume 108 (1987) no. 4, pp. 667–689 | DOI | MR | Zbl

[16] Evans, L.C. Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 74, American Mathematical Society, Providence, RI, 1990 (published for the Conference Board of the Mathematical Sciences, Washington, DC) | DOI | MR | Zbl

[17] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015 | MR | Zbl

[18] Feireisl, E.; Gwiazda, P.; Świerczewska-Gwiazda, A.; Wiedemann, E. Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 6 | DOI | MR | Zbl

[19] Feireisl, E.; Jin, B.J.; Novotný, A. Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., Volume 14 (2012) no. 4, pp. 717–730 | DOI | MR | Zbl

[20] Fjordholm, U.S.; Mishra, S.; Tadmor, E. On the computation of measure-valued solutions, Acta Numer., Volume 25 (2016), pp. 567–679 | DOI | MR | Zbl

[21] Giesselmann, J.; Tzavaras, A.E. Singular limiting induced from continuum solutions and the problem of dynamic cavitation, Arch. Ration. Mech. Anal., Volume 212 (2014) no. 1, pp. 241–281 | DOI | MR | Zbl

[22] Gwiazda, P. On measure-valued solutions to a two-dimensional gravity-driven avalanche flow model, Math. Methods Appl. Sci., Volume 28 (2005) no. 28, pp. 2201–2223 | MR | Zbl

[23] Gwiazda, P.; Świerczewska-Gwiazda, A.; Wiedemann, E. Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, Volume 28 (2015) no. 11, pp. 3873–3890 | DOI | MR | Zbl

[24] Gwiazda, P.; Wiedemann, E. Generalized entropy method for the renewal equation with measure data, Commun. Math. Sci., Volume 15 (2017) no. 2, pp. 577–586 | DOI | MR | Zbl

[25] Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics, vol. 6: Fluid Mechanics, Pergamon Press, Oxford, 1987 (translated from the third Russian edition by J.B. Sykes and W.H. Reid) | MR | Zbl

[26] Majda, A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984 | DOI | MR | Zbl

[27] Michel, P.; Mischler, S.; Perthame, B.t. General entropy equations for structured population models and scattering, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 9, pp. 697–702 | DOI | MR | Zbl

[28] Michel, P.; Mischler, S.; Perthame, B.t. General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl. (9), Volume 84 (2005) no. 9, pp. 1235–1260 | DOI | MR | Zbl

[29] Perthame, B. Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007 | DOI | MR | Zbl

[30] Prodi, G. Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4), Volume 48 (1959), pp. 173–182 | DOI | MR | Zbl

[31] Rao, M.M.; Ren, Z.D. Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991 | MR | Zbl

[32] Serrin, J. Nonlinear Problems, Proc. Sympos., The initial value problem for the Navier-Stokes equations, Univ. of Wisconsin Press, Madison, Wis. (1963), pp. 69–98 (Madison, Wis., 1962) | MR | Zbl

[33] Tartar, L. Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV, Pitman, Boston, Mass.-London, 1979 | MR | Zbl

[34] Wiedemann, E. Weak-strong uniqueness in fluid dynamics, in:Partial differential equations in fluid mechanics, London Math. Soc. Lecture Note Ser., vol. 452, Cambridge Univ. Press, Cambridge, 2018 | MR

[35] Young, L. Generalized curves and the existence of an attained absolute minimum in the calculus of variations, C. R. Séances Soc. Sci. Lett. Vars., Volume 30 (1937), pp. 211–234 | JFM

Cité par Sources :