In this paper, we construct a counterexample to the Liouville property of some nonlocal reaction-diffusion equations of the form
@article{AIHPC_2020__37_3_549_0, author = {Brasseur, Julien and Coville, J\'er\^ome}, title = {A counterexample to the {Liouville} property of some nonlocal problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {549--579}, publisher = {Elsevier}, volume = {37}, number = {3}, year = {2020}, doi = {10.1016/j.anihpc.2019.12.003}, mrnumber = {4093620}, zbl = {1439.35107}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.003/} }
TY - JOUR AU - Brasseur, Julien AU - Coville, Jérôme TI - A counterexample to the Liouville property of some nonlocal problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 549 EP - 579 VL - 37 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.003/ DO - 10.1016/j.anihpc.2019.12.003 LA - en ID - AIHPC_2020__37_3_549_0 ER -
%0 Journal Article %A Brasseur, Julien %A Coville, Jérôme %T A counterexample to the Liouville property of some nonlocal problems %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 549-579 %V 37 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.003/ %R 10.1016/j.anihpc.2019.12.003 %G en %F AIHPC_2020__37_3_549_0
Brasseur, Julien; Coville, Jérôme. A counterexample to the Liouville property of some nonlocal problems. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 549-579. doi : 10.1016/j.anihpc.2019.12.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.003/
[1] Travelling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., Volume 138 (1997), pp. 105–136 | DOI | MR | Zbl
[2] A note on the Poincaré inequality for convex domains, Z. Anal. Anwend., Volume 22 (2003) no. 3, pp. 751–756 | MR | Zbl
[3] A non-local bistable reaction-diffusion equation with a gap, Discrete Contin. Dyn. Syst., Ser. A, Volume 37 (2017), pp. 685–723 | DOI | MR | Zbl
[4] Bistable travelling waves around an obstacle, Commun. Pure Appl. Math., Volume 62 (2009), pp. 729–788 | DOI | MR | Zbl
[5] Robustness for a Liouville type theorem in exterior domains, J. Dyn. Differ. Equ., Volume 27 (2015), pp. 297–306 | DOI | MR | Zbl
[6] Another look at Sobolev spaces, Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439–455 (a volume in honour of A. Bensoussan's 60th birthday) | MR | Zbl
[7] Liouville type results for a nonlocal obstacle problem, Proc. Lond. Math. Soc., Volume 119 (2019) no. 2, pp. 291–328 | DOI | MR | Zbl
[8] Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., Volume 2 (1997), pp. 125–160 | MR | Zbl
[9] J. Coville, Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases, preprint, hal-00696208, 2007.
[10] On a non-local reaction diffusion equation arising in population dynamics, Proc. R. Soc. Edinb., Sect. A, Math., Volume 137 (2007) no. 4, pp. 1–29 | DOI | MR | Zbl
[11] Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa), Mol. Ecol., Volume 21 (2012) no. 14, pp. 3445–3457 | DOI
[12] Sobolev spaces of symmetric functions and applications, J. Funct. Anal., Volume 261 (2011), pp. 3735–3770 | MR | Zbl
[13] The Rocky Mountains as a dispersal barrier between barn owl (Tyto alba) populations in North America, J. Biogeogr., Volume 45 (2018) no. 6, pp. 1288–1300 | DOI
[14] Analytic Inequalities, vol. 165, Springer-Verlag Berlin Heidelberg, 1970 | DOI | MR | Zbl
[15] Landscape connectivity: different functions at different scales, Landscape Linkages and Biodiversity, Island Press, Washington DC, USA, 1991, pp. 27–39
[16] An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., Volume 5 (1960) no. 1, pp. 286–292 | DOI | MR | Zbl
[17] Fish dispersal in fragmented landscapes: a modeling framework for quantifying the permeability of structural barriers, Ecol. Appl., Volume 22 (2012) no. 5, pp. 1435–1445 | DOI
[18] An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc., Volume 6 (2004), pp. 1–15 | DOI | MR | Zbl
[19] How does it feel to be like a rolling stone? Ten questions about dispersal evolution, Annu. Rev. Ecol. Evol. Syst., Volume 38 (2007), pp. 231–253 | DOI
[20] A mechanistic model for secondary seed dispersal by wind and its experimental validation, J. Ecol., Volume 93 (2005) no. 5, pp. 1017–1028 | DOI
[21] Metastability and stability of patterns in a convolution model for phase transitions, J. Differ. Equ., Volume 183 (2002) no. 2, pp. 434–461 | DOI | MR | Zbl
[22] Existence of traveling wave solutions for a nonlocal bistable equation: an abstract approach, Publ. Res. Inst. Math. Sci., Volume 45 (2009) no. 4, pp. 955–979 | MR | Zbl
Cité par Sources :