A counterexample to the Liouville property of some nonlocal problems
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 549-579.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper, we construct a counterexample to the Liouville property of some nonlocal reaction-diffusion equations of the form

RNKJ(xy)(u(y)u(x))dy+f(u(x))=0,xRNK,
where KRN is a bounded compact set, called an “obstacle”, and f is a bistable nonlinearity. When K is convex, it is known that solutions ranging in [0,1] and satisfying u(x)1 as |x| must be identically 1 in the whole space. We construct a nontrivial family of simply connected (non-starshaped) obstacles as well as data f and J for which this property fails.

DOI : 10.1016/j.anihpc.2019.12.003
Mots-clés : Nonlocal diffusion, Liouville property, Bistable nonlinearity, Counterexample, Positive stationary solution, Calculus of variations
Brasseur, Julien 1 ; Coville, Jérôme 2

1 EHESS, CAMS, 54 Boulevard Raspail, F-75006 Paris, France
2 BioSP, INRAE, 84914, Avignon, France
@article{AIHPC_2020__37_3_549_0,
     author = {Brasseur, Julien and Coville, J\'er\^ome},
     title = {A counterexample to the {Liouville} property of some nonlocal problems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {549--579},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.12.003},
     mrnumber = {4093620},
     zbl = {1439.35107},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.003/}
}
TY  - JOUR
AU  - Brasseur, Julien
AU  - Coville, Jérôme
TI  - A counterexample to the Liouville property of some nonlocal problems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 549
EP  - 579
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.003/
DO  - 10.1016/j.anihpc.2019.12.003
LA  - en
ID  - AIHPC_2020__37_3_549_0
ER  - 
%0 Journal Article
%A Brasseur, Julien
%A Coville, Jérôme
%T A counterexample to the Liouville property of some nonlocal problems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 549-579
%V 37
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.003/
%R 10.1016/j.anihpc.2019.12.003
%G en
%F AIHPC_2020__37_3_549_0
Brasseur, Julien; Coville, Jérôme. A counterexample to the Liouville property of some nonlocal problems. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 549-579. doi : 10.1016/j.anihpc.2019.12.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.003/

[1] Bates, P.W.; Fife, P.C.; Ren, X.; Wang, X. Travelling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., Volume 138 (1997), pp. 105–136 | DOI | MR | Zbl

[2] Bebendorf, M. A note on the Poincaré inequality for convex domains, Z. Anal. Anwend., Volume 22 (2003) no. 3, pp. 751–756 | MR | Zbl

[3] Berestycki, H.; Rodiguez, N. A non-local bistable reaction-diffusion equation with a gap, Discrete Contin. Dyn. Syst., Ser. A, Volume 37 (2017), pp. 685–723 | DOI | MR | Zbl

[4] Berestycki, H.; Hamel, F.; Matano, H. Bistable travelling waves around an obstacle, Commun. Pure Appl. Math., Volume 62 (2009), pp. 729–788 | DOI | MR | Zbl

[5] Bouhours, J. Robustness for a Liouville type theorem in exterior domains, J. Dyn. Differ. Equ., Volume 27 (2015), pp. 297–306 | DOI | MR | Zbl

[6] Bourgain, J.; Brezis, H.; Mironescu, P.; Menaldi, J.L.; Rofman, E.; Sulem, A. Another look at Sobolev spaces, Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439–455 (a volume in honour of A. Bensoussan's 60th birthday) | MR | Zbl

[7] Brasseur, J.; Coville, J.; Hamel, F.; Valdinoci, E. Liouville type results for a nonlocal obstacle problem, Proc. Lond. Math. Soc., Volume 119 (2019) no. 2, pp. 291–328 | DOI | MR | Zbl

[8] Chen, X. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., Volume 2 (1997), pp. 125–160 | MR | Zbl

[9] J. Coville, Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases, preprint, hal-00696208, 2007.

[10] Coville, J.; Dupaigne, L. On a non-local reaction diffusion equation arising in population dynamics, Proc. R. Soc. Edinb., Sect. A, Math., Volume 137 (2007) no. 4, pp. 1–29 | DOI | MR | Zbl

[11] Frantz, A.C.; Bertouille, S.; Eloy, M.C.; Licoppe, A.; Chaumont, F.; Flamand, M.C. Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa), Mol. Ecol., Volume 21 (2012) no. 14, pp. 3445–3457 | DOI

[12] de Figueiredo, D.G.; dos Santos, E.M.; Miyagaki, O.H. Sobolev spaces of symmetric functions and applications, J. Funct. Anal., Volume 261 (2011), pp. 3735–3770 | MR | Zbl

[13] Machado, A.P.; Vera, C.; Vera, L.; Vera, U.; Goudet, J.; Roulin, A. The Rocky Mountains as a dispersal barrier between barn owl (Tyto alba) populations in North America, J. Biogeogr., Volume 45 (2018) no. 6, pp. 1288–1300 | DOI

[14] Mitrinović, D.S. Analytic Inequalities, vol. 165, Springer-Verlag Berlin Heidelberg, 1970 | DOI | MR | Zbl

[15] Noss, R.F. Landscape connectivity: different functions at different scales, Landscape Linkages and Biodiversity, Island Press, Washington DC, USA, 1991, pp. 27–39

[16] Payne, L.E.; Weinberger, H.F. An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., Volume 5 (1960) no. 1, pp. 286–292 | DOI | MR | Zbl

[17] Pépino, M.; Rodríguez, M.A.; Magnan, P. Fish dispersal in fragmented landscapes: a modeling framework for quantifying the permeability of structural barriers, Ecol. Appl., Volume 22 (2012) no. 5, pp. 1435–1445 | DOI

[18] Ponce, A. An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc., Volume 6 (2004), pp. 1–15 | DOI | MR | Zbl

[19] Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution, Annu. Rev. Ecol. Evol. Syst., Volume 38 (2007), pp. 231–253 | DOI

[20] Schurr, F.M.; Bond, W.J.; Midgley, G.F.; Higgins, S.I. A mechanistic model for secondary seed dispersal by wind and its experimental validation, J. Ecol., Volume 93 (2005) no. 5, pp. 1017–1028 | DOI

[21] Wang, X. Metastability and stability of patterns in a convolution model for phase transitions, J. Differ. Equ., Volume 183 (2002) no. 2, pp. 434–461 | DOI | MR | Zbl

[22] Yagisita, H. Existence of traveling wave solutions for a nonlocal bistable equation: an abstract approach, Publ. Res. Inst. Math. Sci., Volume 45 (2009) no. 4, pp. 955–979 | MR | Zbl

Cité par Sources :