In this paper we analyze the stability of the traveling wave solution for an ignition-temperature first-order reaction model of diffusional-thermal combustion in the case of high Lewis numbers (
Mots-clés : Free interface problems, Traveling wave solutions, Fully nonlinear parabolic systems, Stability, Hopf bifurcation, Combustion
@article{AIHPC_2020__37_3_581_0, author = {Brauner, Claude-Michel and Lorenzi, Luca and Zhang, Mingmin}, title = {Stability analysis and {Hopf} bifurcation at high {Lewis} number in a combustion model with free interface}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {581--604}, publisher = {Elsevier}, volume = {37}, number = {3}, year = {2020}, doi = {10.1016/j.anihpc.2020.01.002}, mrnumber = {4093622}, zbl = {1442.35555}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.01.002/} }
TY - JOUR AU - Brauner, Claude-Michel AU - Lorenzi, Luca AU - Zhang, Mingmin TI - Stability analysis and Hopf bifurcation at high Lewis number in a combustion model with free interface JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 581 EP - 604 VL - 37 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2020.01.002/ DO - 10.1016/j.anihpc.2020.01.002 LA - en ID - AIHPC_2020__37_3_581_0 ER -
%0 Journal Article %A Brauner, Claude-Michel %A Lorenzi, Luca %A Zhang, Mingmin %T Stability analysis and Hopf bifurcation at high Lewis number in a combustion model with free interface %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 581-604 %V 37 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2020.01.002/ %R 10.1016/j.anihpc.2020.01.002 %G en %F AIHPC_2020__37_3_581_0
Brauner, Claude-Michel; Lorenzi, Luca; Zhang, Mingmin. Stability analysis and Hopf bifurcation at high Lewis number in a combustion model with free interface. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 581-604. doi : 10.1016/j.anihpc.2020.01.002. https://www.numdam.org/articles/10.1016/j.anihpc.2020.01.002/
[1] Instabilities in a combustion model with two free interfaces, J. Differ. Equ., Volume 268 (2020), pp. 3962–4016 | DOI | MR | Zbl
[2] Perturbation and bifurcation in a free boundary problem, J. Differ. Equ., Volume 45 (1982), pp. 34–52 | DOI | MR | Zbl
[3] Diffusive-thermal instabilities in premixed flames: stepwise ignition-temperature kinetics, Combust. Flame, Volume 162 (2015), pp. 2077–2086 | DOI
[4] An ignition-temperature model with two free interfaces in premixed flames, Combust. Theory Model., Volume 20 (2016), pp. 976–994 | MR | Zbl
[5] Asymptotic analysis in a gas-solid combustion model with pattern formation, Chin. Ann. Math., Ser. B, Volume 34 (2013), pp. 65–88 | MR | Zbl
[6] Stability of the travelling wave in a 2D weakly nonlinear Stefan problem, Kinet. Relat. Models, Volume 2 (2009), pp. 109–134 | MR | Zbl
[7] Rigorous derivation of the Kuramoto-Sivashinsky equation in a 2D weakly nonlinear Stefan problem, Interfaces Free Bound., Volume 13 (2011), pp. 73–103 | MR | Zbl
[8] A fully nonlinear equation for the flame front in a quasi-steady combustion model, Discrete Contin. Dyn. Syst., Volume 27 (2010), pp. 1415–1446 | MR | Zbl
[9] A general approach to stability in free boundary problems, J. Differ. Equ., Volume 164 (2000), pp. 16–48 | MR | Zbl
[10] Local existence in free interface problems with underlying second-order Stefan condition, Rev. Roum. Math. Pures Appl., Volume 23 (2018), pp. 339–359 | MR | Zbl
[11] On a strongly damped wave equation for the flame front, Chin. Ann. Math., Ser. B, Volume 31 (2010), pp. 819–840 | MR | Zbl
[12] Stability of travelling waves with interface conditions, Nonlinear Anal., Volume 19 (1992), pp. 465–484 | MR | Zbl
[13] Theory of Laminar Flames, Cambridge University Press, Cambridge, 1982 | DOI | MR | Zbl
[14] Functions of One Complex Variable, Springer-Verlag, 1978 | DOI | MR
[15] The Theory of Matrices, AMS Chelsea Publishing, Providence, RI, 1998 (Reprint of the 1959 translation) | MR | Zbl
[16] On the stability of high Lewis number combustion fronts, Discrete Contin. Dyn. Syst., Volume 24 (2009), pp. 809–826 | DOI | MR | Zbl
[17] Stability of traveling waves for a class of reaction-diffusion systems that arise in chemical reaction models, SIAM J. Math. Anal., Volume 42 (2010), pp. 2434–2472 | DOI | MR | Zbl
[18] A free boundary problem stemmed from combustion theory. I. Existence, uniqueness and regularity results, J. Math. Anal. Appl., Volume 274 (2002), pp. 505–535 | DOI | MR | Zbl
[19] A free boundary problem stemmed from combustion theory. II. Stability, instability and bifurcation results, J. Math. Anal. Appl., Volume 275 (2002), pp. 131–160 | DOI | MR | Zbl
[20] Bifurcation of codimension two in a combustion model, Adv. Math. Sci. Appl., Volume 14 (2004), pp. 483–512 | MR | Zbl
[21] Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1996 | MR | Zbl
[22] An asymptotic derivation of two models in flame theory associated with the constant density approximation, SIAM J. Appl. Math., Volume 37 (1979), pp. 686–699 | DOI | MR | Zbl
[23] Convergence to periodic fronts in a class of semilinear parabolic equations, NoDEA Nonlinear Differ. Equ. Appl., Volume 4 (1997), pp. 521–536 | DOI | MR | Zbl
[24] On the stability of waves of nonlinear parabolic systems, Adv. Math., Volume 22 (1976), pp. 312–355 | DOI | MR | Zbl
[25] On flame propagation under condition of stoichiometry, SIAM J. Appl. Math., Volume 39 (1980), pp. 67–82 | DOI | MR | Zbl
- Stability of Traveling Wave Solutions in a Credit Rating Migration Free Boundary Problem, SIAM Journal on Mathematical Analysis, Volume 57 (2025) no. 1, p. 563 | DOI:10.1137/23m1628061
- On dynamics of gasless combustion in slowly varying periodic media, Combustion and Flame, Volume 267 (2024), p. 113573 | DOI:10.1016/j.combustflame.2024.113573
- Double free boundary problem for defaultable corporate bond with credit rating migration risks and their asymptotic behaviors, Journal of Differential Equations, Volume 372 (2023), pp. 505-535 | DOI:10.1016/j.jde.2023.06.050
- Existence of a traveling wave solution in a free interface problem with fractional order kinetics, Journal of Differential Equations, Volume 281 (2021), pp. 105-147 | DOI:10.1016/j.jde.2021.01.034
Cité par 4 documents. Sources : Crossref, NASA ADS