Stability analysis and Hopf bifurcation at high Lewis number in a combustion model with free interface
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 581-604.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we analyze the stability of the traveling wave solution for an ignition-temperature first-order reaction model of diffusional-thermal combustion in the case of high Lewis numbers (Le>1). In contrast to conventional Arrhenius kinetics where the reaction zone is infinitely thin, the reaction zone for stepwise temperature kinetics is of order unity. The system of two parabolic PDEs is characterized by a free interface at which ignition temperature Θi is reached. We turn the model to a fully nonlinear problem in a fixed domain. When the Lewis number is large, we define a bifurcation parameter m=Θi/(1Θi) and a perturbation parameter ε=1/Le. The main result is the existence of a critical value mc(ε) close to mc=6 at which Hopf bifurcation holds for ε small enough. Proofs combine spectral analysis and non-standard application of Hurwitz's Theorem with asymptotics as ε0.

DOI : 10.1016/j.anihpc.2020.01.002
Classification : 35R35, 35B35, 35K55, 80A25
Mots-clés : Free interface problems, Traveling wave solutions, Fully nonlinear parabolic systems, Stability, Hopf bifurcation, Combustion
Brauner, Claude-Michel 1, 2 ; Lorenzi, Luca 3 ; Zhang, Mingmin 1

1 School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China
2 Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33405 Talence Cedex, France
3 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Plesso di Matematica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy
@article{AIHPC_2020__37_3_581_0,
     author = {Brauner, Claude-Michel and Lorenzi, Luca and Zhang, Mingmin},
     title = {Stability analysis and {Hopf} bifurcation at high {Lewis} number in a combustion model with free interface},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {581--604},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.01.002},
     mrnumber = {4093622},
     zbl = {1442.35555},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.002/}
}
TY  - JOUR
AU  - Brauner, Claude-Michel
AU  - Lorenzi, Luca
AU  - Zhang, Mingmin
TI  - Stability analysis and Hopf bifurcation at high Lewis number in a combustion model with free interface
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 581
EP  - 604
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.002/
DO  - 10.1016/j.anihpc.2020.01.002
LA  - en
ID  - AIHPC_2020__37_3_581_0
ER  - 
%0 Journal Article
%A Brauner, Claude-Michel
%A Lorenzi, Luca
%A Zhang, Mingmin
%T Stability analysis and Hopf bifurcation at high Lewis number in a combustion model with free interface
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 581-604
%V 37
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.002/
%R 10.1016/j.anihpc.2020.01.002
%G en
%F AIHPC_2020__37_3_581_0
Brauner, Claude-Michel; Lorenzi, Luca; Zhang, Mingmin. Stability analysis and Hopf bifurcation at high Lewis number in a combustion model with free interface. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 581-604. doi : 10.1016/j.anihpc.2020.01.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.002/

[1] Addona, D.; Brauner, C.-M.; Lorenzi, L.; Zhang, W. Instabilities in a combustion model with two free interfaces, J. Differ. Equ., Volume 268 (2020), pp. 3962–4016 | DOI | MR | Zbl

[2] Alexander, R.K.; Fleishman, B.A. Perturbation and bifurcation in a free boundary problem, J. Differ. Equ., Volume 45 (1982), pp. 34–52 | DOI | MR | Zbl

[3] Brailovsky, I.; Gordon, P.V.; Kagan, L.; Sivashinsky, G.I. Diffusive-thermal instabilities in premixed flames: stepwise ignition-temperature kinetics, Combust. Flame, Volume 162 (2015), pp. 2077–2086 | DOI

[4] Brauner, C.-M.; Gordon, P.V.; Zhang, W. An ignition-temperature model with two free interfaces in premixed flames, Combust. Theory Model., Volume 20 (2016), pp. 976–994 | MR | Zbl

[5] Brauner, C.-M.; Hu, L.; Lorenzi, L. Asymptotic analysis in a gas-solid combustion model with pattern formation, Chin. Ann. Math., Ser. B, Volume 34 (2013), pp. 65–88 | MR | Zbl

[6] Brauner, C.-M.; Hulshof, J.; Lorenzi, L. Stability of the travelling wave in a 2D weakly nonlinear Stefan problem, Kinet. Relat. Models, Volume 2 (2009), pp. 109–134 | MR | Zbl

[7] Brauner, C.-M.; Hulshof, J.; Lorenzi, L. Rigorous derivation of the Kuramoto-Sivashinsky equation in a 2D weakly nonlinear Stefan problem, Interfaces Free Bound., Volume 13 (2011), pp. 73–103 | MR | Zbl

[8] Brauner, C.-M.; Hulshof, J.; Lorenzi, L.; Sivashinsky, G.I. A fully nonlinear equation for the flame front in a quasi-steady combustion model, Discrete Contin. Dyn. Syst., Volume 27 (2010), pp. 1415–1446 | MR | Zbl

[9] Brauner, C.-M.; Hulshof, J.; Lunardi, A. A general approach to stability in free boundary problems, J. Differ. Equ., Volume 164 (2000), pp. 16–48 | MR | Zbl

[10] Brauner, C.-M.; Lorenzi, L. Local existence in free interface problems with underlying second-order Stefan condition, Rev. Roum. Math. Pures Appl., Volume 23 (2018), pp. 339–359 | MR | Zbl

[11] Brauner, C.-M.; Lorenzi, L.; Sivashinsky, G.I.; Xu, C.-J. On a strongly damped wave equation for the flame front, Chin. Ann. Math., Ser. B, Volume 31 (2010), pp. 819–840 | MR | Zbl

[12] Brauner, C.-M.; Lunardi, A.; Schmidt-Lainé, C. Stability of travelling waves with interface conditions, Nonlinear Anal., Volume 19 (1992), pp. 465–484 | MR | Zbl

[13] Buckmaster, J.D.; Ludford, G.S.S. Theory of Laminar Flames, Cambridge University Press, Cambridge, 1982 | DOI | MR | Zbl

[14] Conway, J.B. Functions of One Complex Variable, Springer-Verlag, 1978 | DOI | MR

[15] Gantmakher, F.R. The Theory of Matrices, AMS Chelsea Publishing, Providence, RI, 1998 (Reprint of the 1959 translation) | MR | Zbl

[16] Ghazaryan, A.; Jones, C.K.R.T. On the stability of high Lewis number combustion fronts, Discrete Contin. Dyn. Syst., Volume 24 (2009), pp. 809–826 | DOI | MR | Zbl

[17] Ghazaryan, A.; Latushkin, Y.; Schecter, S. Stability of traveling waves for a class of reaction-diffusion systems that arise in chemical reaction models, SIAM J. Math. Anal., Volume 42 (2010), pp. 2434–2472 | DOI | MR | Zbl

[18] Lorenzi, L. A free boundary problem stemmed from combustion theory. I. Existence, uniqueness and regularity results, J. Math. Anal. Appl., Volume 274 (2002), pp. 505–535 | DOI | MR | Zbl

[19] Lorenzi, L. A free boundary problem stemmed from combustion theory. II. Stability, instability and bifurcation results, J. Math. Anal. Appl., Volume 275 (2002), pp. 131–160 | DOI | MR | Zbl

[20] Lorenzi, L. Bifurcation of codimension two in a combustion model, Adv. Math. Sci. Appl., Volume 14 (2004), pp. 483–512 | MR | Zbl

[21] Lunardi, A. Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1996 | MR | Zbl

[22] Matkowsky, B.J.; Sivashinsky, G.I. An asymptotic derivation of two models in flame theory associated with the constant density approximation, SIAM J. Appl. Math., Volume 37 (1979), pp. 686–699 | DOI | MR | Zbl

[23] Namah, G.S.; Roquejoffre, J.-M. Convergence to periodic fronts in a class of semilinear parabolic equations, NoDEA Nonlinear Differ. Equ. Appl., Volume 4 (1997), pp. 521–536 | DOI | MR | Zbl

[24] Sattinger, D.H. On the stability of waves of nonlinear parabolic systems, Adv. Math., Volume 22 (1976), pp. 312–355 | DOI | MR | Zbl

[25] Sivashinsky, G.I. On flame propagation under condition of stoichiometry, SIAM J. Appl. Math., Volume 39 (1980), pp. 67–82 | DOI | MR | Zbl

Cité par Sources :