We give a Wong-Zakai type characterisation of the solutions of quasilinear heat equations driven by space-time white noise in dimensions. In order to show that the renormalisation counterterms are local in the solution, a careful arrangement of a few hundred terms is required. The main tool in this computation is a general ‘integration by parts’ formula that provides a number of linear identities for the renormalisation constants.
Mots-clés : Stochastic partial differential equations, Renormalisation, Regularity structures, Quasilinear equations
@article{AIHPC_2020__37_3_663_0, author = {Gerencs\'er, M\'at\'e}, title = {Nondivergence form quasilinear heat equations driven by space-time white noise}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {663--682}, publisher = {Elsevier}, volume = {37}, number = {3}, year = {2020}, doi = {10.1016/j.anihpc.2020.01.003}, mrnumber = {4093623}, zbl = {1446.60051}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.003/} }
TY - JOUR AU - Gerencsér, Máté TI - Nondivergence form quasilinear heat equations driven by space-time white noise JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 663 EP - 682 VL - 37 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.003/ DO - 10.1016/j.anihpc.2020.01.003 LA - en ID - AIHPC_2020__37_3_663_0 ER -
%0 Journal Article %A Gerencsér, Máté %T Nondivergence form quasilinear heat equations driven by space-time white noise %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 663-682 %V 37 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.003/ %R 10.1016/j.anihpc.2020.01.003 %G en %F AIHPC_2020__37_3_663_0
Gerencsér, Máté. Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 663-682. doi : 10.1016/j.anihpc.2020.01.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.003/
[1] Renormalizing SPDEs in regularity structures, J. Eur. Math. Soc. (2020) (in press) | arXiv | DOI | MR | Zbl
[2] Quasilinear generalized parabolic Anderson model equation, Stoch. Partial Differ. Equ., Anal. Computat., Volume 7 (2019) no. 1, pp. 40–63 | DOI | MR | Zbl
[3] Geometric stochastic heat equations, 2019 (arXiv e-prints) | arXiv | MR
[4] Algebraic renormalisation of regularity structures, Invent. Math., Volume 215 (2019) no. 3, pp. 1039–1156 | DOI | MR | Zbl
[5] An analytic BPHZ theorem for regularity structures, 2016 (ArXiv e-prints) | arXiv
[6] Paracontrolled quasilinear SPDEs, Ann. Probab., Volume 47 (2019) no. 2, pp. 1096–1135 | DOI | MR | Zbl
[7] A solution theory for quasilinear singular SPDEs, Commun. Pure Appl. Math., Volume 72 (2019) no. 9, pp. 1983–2005 | DOI | MR | Zbl
[8] Singular SPDEs in domains with boundaries, Probab. Theory Relat. Fields, Volume 173 (2019) no. 3, pp. 697–758 | DOI | MR | Zbl
[9] Paracontrolled distributions and singular PDEs, Forum Math. Pi, Volume 3 (2015), pp. e6 | DOI | MR | Zbl
[10] A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269–504 | arXiv | DOI | MR | Zbl
[11] The motion of a random string, 2016 (ArXiv e-prints) | arXiv
[12] Renormalisation of parabolic stochastic PDEs, Jpn. J. Math., Volume 13 (2018) no. 2, pp. 187–233 | DOI | MR | Zbl
[13] Renormalization group and stochastic PDEs, Ann. Henri Poincaré, Volume 17 (2016) no. 3, pp. 497–535 | DOI | MR | Zbl
[14] The continuous Anderson hamiltonian in , 2018 (arXiv e-prints) | arXiv | MR
[15] F. Otto, C. Raithel, J.a. Sauer, The initial value problem for singular SPDEs via rough paths, in preparation.
[16] F. Otto, J. Sauer, S. Smith, H. Weber, in preparation.
[17] Parabolic equations with rough coefficients and singular forcing, 2018 (arXiv e-prints) | arXiv
[18] Hölder regularity for a non-linear parabolic equation driven by space-time white noise, 2015 (arXiv e-prints) | arXiv
[19] Quasi-linear SPDEs in divergence form, Stoch. Partial Differ. Equ., Anal. Computat. (2018) | DOI | MR | Zbl
[20] Quasilinear SPDEs via rough paths, Arch. Ration. Mech. Anal., Volume 232 (2019) no. 2, pp. 873–950 | DOI | MR | Zbl
Cité par Sources :