Nondivergence form quasilinear heat equations driven by space-time white noise
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 663-682.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We give a Wong-Zakai type characterisation of the solutions of quasilinear heat equations driven by space-time white noise in 1+1 dimensions. In order to show that the renormalisation counterterms are local in the solution, a careful arrangement of a few hundred terms is required. The main tool in this computation is a general ‘integration by parts’ formula that provides a number of linear identities for the renormalisation constants.

DOI : 10.1016/j.anihpc.2020.01.003
Classification : 60H15, 60L30
Mots-clés : Stochastic partial differential equations, Renormalisation, Regularity structures, Quasilinear equations
@article{AIHPC_2020__37_3_663_0,
     author = {Gerencs\'er, M\'at\'e},
     title = {Nondivergence form quasilinear heat equations driven by space-time white noise},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {663--682},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.01.003},
     mrnumber = {4093623},
     zbl = {1446.60051},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.003/}
}
TY  - JOUR
AU  - Gerencsér, Máté
TI  - Nondivergence form quasilinear heat equations driven by space-time white noise
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 663
EP  - 682
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.003/
DO  - 10.1016/j.anihpc.2020.01.003
LA  - en
ID  - AIHPC_2020__37_3_663_0
ER  - 
%0 Journal Article
%A Gerencsér, Máté
%T Nondivergence form quasilinear heat equations driven by space-time white noise
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 663-682
%V 37
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.003/
%R 10.1016/j.anihpc.2020.01.003
%G en
%F AIHPC_2020__37_3_663_0
Gerencsér, Máté. Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 663-682. doi : 10.1016/j.anihpc.2020.01.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.003/

[1] Bruned, Y.; Chandra, A.; Chevyrev, I.; Hairer, M. Renormalizing SPDEs in regularity structures, J. Eur. Math. Soc. (2020) (in press) | arXiv | DOI | MR | Zbl

[2] Bailleul, I.; Debussche, A.; Hofmanová, M. Quasilinear generalized parabolic Anderson model equation, Stoch. Partial Differ. Equ., Anal. Computat., Volume 7 (2019) no. 1, pp. 40–63 | DOI | MR | Zbl

[3] Bruned, Y.; Gabriel, F.; Hairer, M.; Zambotti, L. Geometric stochastic heat equations, 2019 (arXiv e-prints) | arXiv | MR

[4] Bruned, Y.; Hairer, M.; Zambotti, L. Algebraic renormalisation of regularity structures, Invent. Math., Volume 215 (2019) no. 3, pp. 1039–1156 | DOI | MR | Zbl

[5] Chandra, A.; Hairer, M. An analytic BPHZ theorem for regularity structures, 2016 (ArXiv e-prints) | arXiv

[6] Furlan, M.; Gubinelli, M. Paracontrolled quasilinear SPDEs, Ann. Probab., Volume 47 (2019) no. 2, pp. 1096–1135 | DOI | MR | Zbl

[7] Gerencsér, M.; Hairer, M. A solution theory for quasilinear singular SPDEs, Commun. Pure Appl. Math., Volume 72 (2019) no. 9, pp. 1983–2005 | DOI | MR | Zbl

[8] Gerencsér, M.; Hairer, M. Singular SPDEs in domains with boundaries, Probab. Theory Relat. Fields, Volume 173 (2019) no. 3, pp. 697–758 | DOI | MR | Zbl

[9] Gubinelli, M.; Imkeller, P.; Perkowski, N. Paracontrolled distributions and singular PDEs, Forum Math. Pi, Volume 3 (2015), pp. e6 | DOI | MR | Zbl

[10] Hairer, M. A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269–504 | arXiv | DOI | MR | Zbl

[11] Hairer, M. The motion of a random string, 2016 (ArXiv e-prints) | arXiv

[12] Hairer, M. Renormalisation of parabolic stochastic PDEs, Jpn. J. Math., Volume 13 (2018) no. 2, pp. 187–233 | DOI | MR | Zbl

[13] Kupiainen, A. Renormalization group and stochastic PDEs, Ann. Henri Poincaré, Volume 17 (2016) no. 3, pp. 497–535 | DOI | MR | Zbl

[14] Labbé, C. The continuous Anderson hamiltonian in d3 , 2018 (arXiv e-prints) | arXiv | MR

[15] F. Otto, C. Raithel, J.a. Sauer, The initial value problem for singular SPDEs via rough paths, in preparation.

[16] F. Otto, J. Sauer, S. Smith, H. Weber, in preparation.

[17] Otto, F.; Sauer, J.; Smith, S.; Weber, H. Parabolic equations with rough coefficients and singular forcing, 2018 (arXiv e-prints) | arXiv

[18] Otto, F.; Weber, H. Hölder regularity for a non-linear parabolic equation driven by space-time white noise, 2015 (arXiv e-prints) | arXiv

[19] Otto, F.; Weber, H. Quasi-linear SPDEs in divergence form, Stoch. Partial Differ. Equ., Anal. Computat. (2018) | DOI | MR | Zbl

[20] Otto, F.; Weber, H. Quasilinear SPDEs via rough paths, Arch. Ration. Mech. Anal., Volume 232 (2019) no. 2, pp. 873–950 | DOI | MR | Zbl

Cité par Sources :