Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 653-661.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Given a Banach space E with a supremum-type norm induced by a collection of operators, we prove that E is a dual space and provide an atomic decomposition of its predual. We apply this result, and some results obtained previously by one of the authors, to the function space B introduced recently by Bourgain, Brezis, and Mironescu. This yields an atomic decomposition of the predual B, the biduality result that B0=B and B=B, and a formula for the distance from an element fB to B0.

DOI : 10.1016/j.anihpc.2020.01.004
Mots-clés : Dual and predual, Bourgain-Brezis-Mironescu space, Atomic decomposition
D'Onofrio, Luigi 1 ; Greco, Luigi 2 ; Perfekt, Karl-Mikael 3 ; Sbordone, Carlo 4 ; Schiattarella, Roberta 4

1 Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli “Parthenope”, Centro Direzionale Isola C4, 80100 Napoli, Italy
2 Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli “Federico II”, Via Claudio 21, 80125 Napoli, Italy
3 Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, United Kingdom
4 Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Napoli, Italy
@article{AIHPC_2020__37_3_653_0,
     author = {D'Onofrio, Luigi and Greco, Luigi and Perfekt, Karl-Mikael and Sbordone, Carlo and Schiattarella, Roberta},
     title = {Atomic decompositions, two stars theorems, and distances for the {Bourgain{\textendash}Brezis{\textendash}Mironescu} space and other big spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {653--661},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.01.004},
     mrnumber = {4093624},
     zbl = {1443.46005},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.004/}
}
TY  - JOUR
AU  - D'Onofrio, Luigi
AU  - Greco, Luigi
AU  - Perfekt, Karl-Mikael
AU  - Sbordone, Carlo
AU  - Schiattarella, Roberta
TI  - Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 653
EP  - 661
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.004/
DO  - 10.1016/j.anihpc.2020.01.004
LA  - en
ID  - AIHPC_2020__37_3_653_0
ER  - 
%0 Journal Article
%A D'Onofrio, Luigi
%A Greco, Luigi
%A Perfekt, Karl-Mikael
%A Sbordone, Carlo
%A Schiattarella, Roberta
%T Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 653-661
%V 37
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.004/
%R 10.1016/j.anihpc.2020.01.004
%G en
%F AIHPC_2020__37_3_653_0
D'Onofrio, Luigi; Greco, Luigi; Perfekt, Karl-Mikael; Sbordone, Carlo; Schiattarella, Roberta. Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 653-661. doi : 10.1016/j.anihpc.2020.01.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.004/

[1] Ambrosio, Luigi; Bourgain, Jean; Brezis, Haïm; Figalli, Alessio BMO-type norms related to the perimeter of sets, Commun. Pure Appl. Math., Volume 69 (2016), pp. 1062–1086 | MR | Zbl

[2] Ambrosio, Luigi; Comi, Giovanni Anisotropic surface measures as limits of volume fractions, Curr. Res. Nonlinear Anal., Volume 135 (2018), pp. 1–32 | DOI | MR | Zbl

[3] Bourgain, Jean; Brezis, Haïm; Mironescu, Petru A new function space and applications, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 9, pp. 2083–2101 | MR | Zbl

[4] Brudnyi, Alexander; Brudnyi, Yuri On Banach structure of multivariate BV spaces I, 2018 | arXiv | MR

[5] D'Onofrio, Luigi; Sbordone, Carlo; Schiattarella, Roberta Duality and distance formulas in Banach function spaces, J. Elliptic Parabolic Equ., Volume 5 (2019) no. 1, pp. 1–23 | MR | Zbl

[6] Dafni, Galia; Hytönen, Tuomas; Korte, Riikka; Yue, Hong The space J N p : nontriviality and duality, J. Funct. Anal., Volume 275 (2018) no. 3, pp. 577–603 | MR | Zbl

[7] Farroni, Fernando; Fusco, Nicola; Guarino Lo Bianco, Serena; Schiattarella, Roberta A formula for the anisotropic total variation of SBV functions, J. Funct. Anal. (2020) (in press) | MR | Zbl

[8] Fusco, Nicola; Moscariello, Gioconda; Sbordone, Carlo A formula for the total variation of SBV functions, J. Funct. Anal., Volume 270 (2016) no. 1, pp. 419–446 | MR

[9] Fusco, Nicola; Moscariello, Gioconda; Sbordone, Carlo BMO-type seminorms and Sobolev functions, ESAIM Control Optim. Calc. Var., Volume 24 (2018) no. 2, pp. 835–847 | Numdam | MR | Zbl

[10] Harmand, Peter; Werner, Dirk; Werner, Wend M -Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993 (viii+387 pp) | DOI | MR | Zbl

[11] Holmes, Richard; Scranton, Bruce; Ward, Joseph Approximation from the space of compact operators and other M -ideals, Duke Math. J., Volume 42 (1975), pp. 259–269 | MR | Zbl

[12] Leonard, Isaac E. Banach sequence spaces, J. Math. Anal. Appl., Volume 54 (1976) no. 1, pp. 245–265 | MR | Zbl

[13] Perfekt, Karl-Mikael Duality and distance formulas in spaces defined by means of oscillation, Ark. Mat., Volume 51 (2013) no. 2, pp. 345–361 | MR | Zbl

[14] Perfekt, Karl-Mikael On M -ideals and o-O type spaces, Math. Scand., Volume 121 (2017) no. 1, pp. 151–160 | MR | Zbl

[15] Perfekt, Karl-Mikael On the spaces of bounded and compact multiplicative Hankel operators, N.Y. J. Math., Volume 25 (2019), pp. 589–602 | MR | Zbl

Cité par Sources :