Given a Banach space E with a supremum-type norm induced by a collection of operators, we prove that E is a dual space and provide an atomic decomposition of its predual. We apply this result, and some results obtained previously by one of the authors, to the function space introduced recently by Bourgain, Brezis, and Mironescu. This yields an atomic decomposition of the predual , the biduality result that and , and a formula for the distance from an element to .
@article{AIHPC_2020__37_3_653_0, author = {D'Onofrio, Luigi and Greco, Luigi and Perfekt, Karl-Mikael and Sbordone, Carlo and Schiattarella, Roberta}, title = {Atomic decompositions, two stars theorems, and distances for the {Bourgain{\textendash}Brezis{\textendash}Mironescu} space and other big spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {653--661}, publisher = {Elsevier}, volume = {37}, number = {3}, year = {2020}, doi = {10.1016/j.anihpc.2020.01.004}, mrnumber = {4093624}, zbl = {1443.46005}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.004/} }
TY - JOUR AU - D'Onofrio, Luigi AU - Greco, Luigi AU - Perfekt, Karl-Mikael AU - Sbordone, Carlo AU - Schiattarella, Roberta TI - Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 653 EP - 661 VL - 37 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.004/ DO - 10.1016/j.anihpc.2020.01.004 LA - en ID - AIHPC_2020__37_3_653_0 ER -
%0 Journal Article %A D'Onofrio, Luigi %A Greco, Luigi %A Perfekt, Karl-Mikael %A Sbordone, Carlo %A Schiattarella, Roberta %T Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 653-661 %V 37 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.004/ %R 10.1016/j.anihpc.2020.01.004 %G en %F AIHPC_2020__37_3_653_0
D'Onofrio, Luigi; Greco, Luigi; Perfekt, Karl-Mikael; Sbordone, Carlo; Schiattarella, Roberta. Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 653-661. doi : 10.1016/j.anihpc.2020.01.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.004/
[1] BMO-type norms related to the perimeter of sets, Commun. Pure Appl. Math., Volume 69 (2016), pp. 1062–1086 | MR | Zbl
[2] Anisotropic surface measures as limits of volume fractions, Curr. Res. Nonlinear Anal., Volume 135 (2018), pp. 1–32 | DOI | MR | Zbl
[3] A new function space and applications, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 9, pp. 2083–2101 | MR | Zbl
[4] On Banach structure of multivariate BV spaces I, 2018 | arXiv | MR
[5] Duality and distance formulas in Banach function spaces, J. Elliptic Parabolic Equ., Volume 5 (2019) no. 1, pp. 1–23 | MR | Zbl
[6] The space : nontriviality and duality, J. Funct. Anal., Volume 275 (2018) no. 3, pp. 577–603 | MR | Zbl
[7] A formula for the anisotropic total variation of SBV functions, J. Funct. Anal. (2020) (in press) | MR | Zbl
[8] A formula for the total variation of SBV functions, J. Funct. Anal., Volume 270 (2016) no. 1, pp. 419–446 | MR
[9] BMO-type seminorms and Sobolev functions, ESAIM Control Optim. Calc. Var., Volume 24 (2018) no. 2, pp. 835–847 | Numdam | MR | Zbl
[10] -Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993 (viii+387 pp) | DOI | MR | Zbl
[11] Approximation from the space of compact operators and other -ideals, Duke Math. J., Volume 42 (1975), pp. 259–269 | MR | Zbl
[12] Banach sequence spaces, J. Math. Anal. Appl., Volume 54 (1976) no. 1, pp. 245–265 | MR | Zbl
[13] Duality and distance formulas in spaces defined by means of oscillation, Ark. Mat., Volume 51 (2013) no. 2, pp. 345–361 | MR | Zbl
[14] On -ideals and o-O type spaces, Math. Scand., Volume 121 (2017) no. 1, pp. 151–160 | MR | Zbl
[15] On the spaces of bounded and compact multiplicative Hankel operators, N.Y. J. Math., Volume 25 (2019), pp. 589–602 | MR | Zbl
Cité par Sources :