We consider an elliptic equation in a cone, endowed with (possibly inhomogeneous) Neumann conditions. The operator and the forcing terms can also allow non-Lipschitz singularities at the vertex of the cone.
In this setting, we provide unique continuation results, both in terms of interior and boundary points.
The proof relies on a suitable Almgren-type frequency formula with remainders. As a byproduct, we obtain classification results for blow-up limits.
Mots-clés : Unique continuation, Singular weights, Conical geometry, Blow-up limits, Almgren's frequency formula
@article{AIHPC_2020__37_4_785_0, author = {Dipierro, Serena and Felli, Veronica and Valdinoci, Enrico}, title = {Unique continuation principles in cones under nonzero {Neumann} boundary conditions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {785--815}, publisher = {Elsevier}, volume = {37}, number = {4}, year = {2020}, doi = {10.1016/j.anihpc.2020.01.005}, mrnumber = {4104826}, zbl = {1479.35287}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.005/} }
TY - JOUR AU - Dipierro, Serena AU - Felli, Veronica AU - Valdinoci, Enrico TI - Unique continuation principles in cones under nonzero Neumann boundary conditions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 785 EP - 815 VL - 37 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.005/ DO - 10.1016/j.anihpc.2020.01.005 LA - en ID - AIHPC_2020__37_4_785_0 ER -
%0 Journal Article %A Dipierro, Serena %A Felli, Veronica %A Valdinoci, Enrico %T Unique continuation principles in cones under nonzero Neumann boundary conditions %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 785-815 %V 37 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.005/ %R 10.1016/j.anihpc.2020.01.005 %G en %F AIHPC_2020__37_4_785_0
Dipierro, Serena; Felli, Veronica; Valdinoci, Enrico. Unique continuation principles in cones under nonzero Neumann boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 785-815. doi : 10.1016/j.anihpc.2020.01.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.005/
[1] domains and unique continuation at the boundary, Commun. Pure Appl. Math., Volume 50 (1997) no. 10, pp. 935–969 (MR1466583) | DOI | MR | Zbl
[2] Convex domains and unique continuation at the boundary, Rev. Mat. Iberoam., Volume 11 (1995) no. 3, pp. 513–525 (MR1363203) | DOI | MR | Zbl
[3] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623–727 (MR0125307) | DOI | MR | Zbl
[4] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., Volume 17 (1964), pp. 35–92 (MR0162050) | DOI | MR | Zbl
[5] Minimal Submanifolds and Geodesics, Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents (1979), pp. 1–6 (Proc. Japan-United States Sem., Tokyo, 1977 North-Holland, Amsterdam-New York, MR574247) | MR | Zbl
[6] Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Commun. Partial Differ. Equ., Volume 39 (2014) no. 2, pp. 354–397 (MR3169789) | DOI | MR | Zbl
[7] Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, J. Eur. Math. Soc., Volume 13 (2011) no. 1, pp. 119–174 (MR2735078) | DOI | MR | Zbl
[8] Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations, Proc. R. Soc. Edinb., Sect. A, Volume 143 (2013) no. 5, pp. 957–1019 (MR3109767) | DOI | MR | Zbl
[9] Monotonicity properties of variational integrals, weights and unique continuation, Indiana Univ. Math. J., Volume 35 (1986) no. 2, pp. 245–268 (MR833393) | DOI | MR | Zbl
[10] Unique continuation for elliptic operators: a geometric-variational approach, Commun. Pure Appl. Math., Volume 40 (1987) no. 3, pp. 347–366 (MR882069) | DOI | MR | Zbl
[11] Unique continuation on the boundary for Dini domains, Proc. Am. Math. Soc., Volume 126 (1998) no. 2, pp. 441–446 (MR1415331) | DOI | MR | Zbl
[12] A unique continuation theorem for uniformly elliptic equations with strongly singular potentials, Commun. Partial Differ. Equ., Volume 18 (1993) no. 7–8, pp. 1161–1189 (MR1233189) | DOI | MR | Zbl
[13] Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972 (Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181, MR0350177) | MR | Zbl
[14] Partial Differential Equations in Action: From Modelling to Theory, Universitext, Springer-Verlag, Italia, Milan, 2008 (MR2399851) | MR | Zbl
[15] Boundary unique continuation theorems under zero Neumann boundary conditions, Bull. Aust. Math. Soc., Volume 72 (2005) no. 1, pp. 67–85 (MR2162295) | DOI | MR | Zbl
[16] Weighted doubling properties and unique continuation theorems for the degenerate Schrödinger equations with singular potentials, J. Math. Anal. Appl., Volume 339 (2008) no. 1, pp. 70–84 (MR2370633) | DOI | MR | Zbl
Cité par Sources :