Unique continuation principles in cones under nonzero Neumann boundary conditions
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 785-815.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider an elliptic equation in a cone, endowed with (possibly inhomogeneous) Neumann conditions. The operator and the forcing terms can also allow non-Lipschitz singularities at the vertex of the cone.

In this setting, we provide unique continuation results, both in terms of interior and boundary points.

The proof relies on a suitable Almgren-type frequency formula with remainders. As a byproduct, we obtain classification results for blow-up limits.

DOI : 10.1016/j.anihpc.2020.01.005
Classification : 35J15, 35J25, 35J75
Mots-clés : Unique continuation, Singular weights, Conical geometry, Blow-up limits, Almgren's frequency formula
Dipierro, Serena 1 ; Felli, Veronica 2 ; Valdinoci, Enrico 1

1 Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
2 Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy
@article{AIHPC_2020__37_4_785_0,
     author = {Dipierro, Serena and Felli, Veronica and Valdinoci, Enrico},
     title = {Unique continuation principles in cones under nonzero {Neumann} boundary conditions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {785--815},
     publisher = {Elsevier},
     volume = {37},
     number = {4},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.01.005},
     mrnumber = {4104826},
     zbl = {1479.35287},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.005/}
}
TY  - JOUR
AU  - Dipierro, Serena
AU  - Felli, Veronica
AU  - Valdinoci, Enrico
TI  - Unique continuation principles in cones under nonzero Neumann boundary conditions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 785
EP  - 815
VL  - 37
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.005/
DO  - 10.1016/j.anihpc.2020.01.005
LA  - en
ID  - AIHPC_2020__37_4_785_0
ER  - 
%0 Journal Article
%A Dipierro, Serena
%A Felli, Veronica
%A Valdinoci, Enrico
%T Unique continuation principles in cones under nonzero Neumann boundary conditions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 785-815
%V 37
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.005/
%R 10.1016/j.anihpc.2020.01.005
%G en
%F AIHPC_2020__37_4_785_0
Dipierro, Serena; Felli, Veronica; Valdinoci, Enrico. Unique continuation principles in cones under nonzero Neumann boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 785-815. doi : 10.1016/j.anihpc.2020.01.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.005/

[1] Adolfsson, Vilhelm; Escauriaza, Luis C1,α domains and unique continuation at the boundary, Commun. Pure Appl. Math., Volume 50 (1997) no. 10, pp. 935–969 (MR1466583) | DOI | MR | Zbl

[2] Adolfsson, Vilhelm; Escauriaza, Luis; Kenig, Carlos Convex domains and unique continuation at the boundary, Rev. Mat. Iberoam., Volume 11 (1995) no. 3, pp. 513–525 (MR1363203) | DOI | MR | Zbl

[3] Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623–727 (MR0125307) | DOI | MR | Zbl

[4] Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., Volume 17 (1964), pp. 35–92 (MR0162050) | DOI | MR | Zbl

[5] Almgren, Frederick J. Jr. Minimal Submanifolds and Geodesics, Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents (1979), pp. 1–6 (Proc. Japan-United States Sem., Tokyo, 1977 North-Holland, Amsterdam-New York, MR574247) | MR | Zbl

[6] Fall, Mouhamed Moustapha; Felli, Veronica Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Commun. Partial Differ. Equ., Volume 39 (2014) no. 2, pp. 354–397 (MR3169789) | DOI | MR | Zbl

[7] Felli, Veronica; Ferrero, Alberto; Terracini, Susanna Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, J. Eur. Math. Soc., Volume 13 (2011) no. 1, pp. 119–174 (MR2735078) | DOI | MR | Zbl

[8] Felli, Veronica; Ferrero, Alberto Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations, Proc. R. Soc. Edinb., Sect. A, Volume 143 (2013) no. 5, pp. 957–1019 (MR3109767) | DOI | MR | Zbl

[9] Garofalo, Nicola; Lin, Fang-Hua Monotonicity properties of variational integrals, Ap weights and unique continuation, Indiana Univ. Math. J., Volume 35 (1986) no. 2, pp. 245–268 (MR833393) | DOI | MR | Zbl

[10] Garofalo, Nicola; Lin, Fang-Hua Unique continuation for elliptic operators: a geometric-variational approach, Commun. Pure Appl. Math., Volume 40 (1987) no. 3, pp. 347–366 (MR882069) | DOI | MR | Zbl

[11] Kukavica, Igor; Nyström, Kaj Unique continuation on the boundary for Dini domains, Proc. Am. Math. Soc., Volume 126 (1998) no. 2, pp. 441–446 (MR1415331) | DOI | MR | Zbl

[12] Kurata, Kazuhiro A unique continuation theorem for uniformly elliptic equations with strongly singular potentials, Commun. Partial Differ. Equ., Volume 18 (1993) no. 7–8, pp. 1161–1189 (MR1233189) | DOI | MR | Zbl

[13] Lions, J.-L.; Magenes, E. Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972 (Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181, MR0350177) | MR | Zbl

[14] Salsa, Sandro Partial Differential Equations in Action: From Modelling to Theory, Universitext, Springer-Verlag, Italia, Milan, 2008 (MR2399851) | MR | Zbl

[15] Tao, Xiangxing; Zhang, Songyan Boundary unique continuation theorems under zero Neumann boundary conditions, Bull. Aust. Math. Soc., Volume 72 (2005) no. 1, pp. 67–85 (MR2162295) | DOI | MR | Zbl

[16] Tao, Xiangxing; Zhang, Songyan Weighted doubling properties and unique continuation theorems for the degenerate Schrödinger equations with singular potentials, J. Math. Anal. Appl., Volume 339 (2008) no. 1, pp. 70–84 (MR2370633) | DOI | MR | Zbl

Cité par Sources :