We provide Lipschitz regularity for solutions to viscous time-dependent Hamilton-Jacobi equations with right-hand side belonging to Lebesgue spaces. Our approach is based on a duality method, and relies on the analysis of the regularity of the gradient of solutions to a dual (Fokker-Planck) equation. Here, the regularizing effect is due to the non-degenerate diffusion and coercivity of the Hamiltonian in the gradient variable.
Mots-clés : Hamilton-Jacobi equations with unbounded data, Lipschitz regularity, Kardar-Parisi-Zhang, Adjoint method
@article{AIHPC_2020__37_4_757_0, author = {Cirant, Marco and Goffi, Alessandro}, title = {Lipschitz regularity for viscous {Hamilton-Jacobi} equations with $L^p$ terms}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {757--784}, publisher = {Elsevier}, volume = {37}, number = {4}, year = {2020}, doi = {10.1016/j.anihpc.2020.01.006}, mrnumber = {4104825}, zbl = {1440.35036}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.006/} }
TY - JOUR AU - Cirant, Marco AU - Goffi, Alessandro TI - Lipschitz regularity for viscous Hamilton-Jacobi equations with $L^p$ terms JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 757 EP - 784 VL - 37 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.006/ DO - 10.1016/j.anihpc.2020.01.006 LA - en ID - AIHPC_2020__37_4_757_0 ER -
%0 Journal Article %A Cirant, Marco %A Goffi, Alessandro %T Lipschitz regularity for viscous Hamilton-Jacobi equations with $L^p$ terms %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 757-784 %V 37 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.006/ %R 10.1016/j.anihpc.2020.01.006 %G en %F AIHPC_2020__37_4_757_0
Cirant, Marco; Goffi, Alessandro. Lipschitz regularity for viscous Hamilton-Jacobi equations with $L^p$ terms. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 757-784. doi : 10.1016/j.anihpc.2020.01.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.01.006/
[1] On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., Volume 27 (1978) no. 5, pp. 779–790 | DOI | MR | Zbl
[2] Viscosity solutions of general viscous Hamilton-Jacobi equations, Math. Ann., Volume 361 (2015) no. 3–4, pp. 647–687 | MR | Zbl
[3] Local behavior of solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal., Volume 25 (1967), pp. 81–122 | DOI | MR | Zbl
[4] Interior gradient bounds for the mean curvature equation by viscosity solutions methods, Differ. Integral Equ., Volume 4 (1991) no. 2, pp. 263–275 | MR | Zbl
[5] On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., Volume 31 (2000) no. 4, pp. 925–939 | DOI | MR | Zbl
[6] The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures Appl. (9), Volume 81 (2002) no. 4, pp. 343–378 | DOI | MR | Zbl
[7] Sur la généralisation du problème de Dirichlet, Math. Ann., Volume 69 (1910) no. 1, pp. 82–136 | DOI | JFM | MR
[8] Optimality of integrability estimates for advection-diffusion equations, NoDEA Nonlinear Differ. Equ. Appl., Volume 24 (2017) no. 4 | DOI | MR | Zbl
[9] Some noncoercive parabolic equations with lower order terms in divergence form, J. Evol. Equ., Volume 3 (2003) no. 3, pp. 407–418 | DOI | MR | Zbl
[10] Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl
[11] Second order mean field games with degenerate diffusion and local coupling, NoDEA Nonlinear Differ. Equ. Appl., Volume 22 (2015) no. 5, pp. 1287–1317 | DOI | MR | Zbl
[12] Sobolev regularity for the first order Hamilton-Jacobi equation, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 3, pp. 3037–3065 | DOI | MR | Zbl
[13] Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side, Commun. Partial Differ. Equ., Volume 37 (2012) no. 9, pp. 1668–1688 | DOI | MR | Zbl
[14] Short time existence for a general backward-forward parabolic system arising from mean-field games, Dyn. Games Appl. (2019) (in press) | arXiv | DOI | MR | Zbl
[15] On the existence and uniqueness of solutions to time-dependent fractional MFG, SIAM J. Math. Anal., Volume 51 (2019) no. 2, pp. 913–954 | DOI | MR | Zbl
[16] Time-dependent focusing mean-field games: the sub-critical case, J. Dyn. Differ. Equ., Volume 31 (2019) no. 1, pp. 49–79 | DOI | MR | Zbl
[17] Maximal solutions and universal bounds for some partial differential equations of evolution, Arch. Ration. Mech. Anal., Volume 105 (1989) no. 2, pp. 163–190 | DOI | MR | Zbl
[18] Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Evolution Problems. I, Springer-Verlag, Berlin, 1992 (translated from the French by Alan Craig) | Zbl
[19] Existence and uniqueness of solutions to parabolic equations with superlinear Hamiltonians, Commun. Contemp. Math., Volume 21 (2019) no. 1 | DOI | MR | Zbl
[20] Some new results on Lipschitz regularization for parabolic equations, J. Evol. Equ. (2019) | MR | Zbl
[21] Adjoint and compensated compactness methods for Hamilton-Jacobi PDE, Arch. Ration. Mech. Anal., Volume 197 (2010) no. 3, pp. 1053–1088 | DOI | MR | Zbl
[22] Topics in nonlinear PDEs: from Mean Field Games to problems modeled on Hörmander vector fields, Gran Sasso Science Institute, 2019 (PhD thesis)
[23] A stochastic Evans-Aronsson problem, Trans. Am. Math. Soc., Volume 366 (2014) no. 2, pp. 903–929 | DOI | MR | Zbl
[24] Time-dependent mean-field games in the superquadratic case, ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 2, pp. 562–580 | DOI | Numdam | MR | Zbl
[25] Time-dependent mean-field games in the subquadratic case, Commun. Partial Differ. Equ., Volume 40 (2015) no. 1, pp. 40–76 | DOI | MR | Zbl
[26] Regularity Theory for Mean-Field Game Systems, Springer Briefs in Mathematics, Springer, Cham, 2016 | DOI | MR
[27] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differ. Equ., Volume 83 (1990) no. 1, pp. 26–78 | DOI | MR | Zbl
[28] Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Providence, R.I., 1968 (translated from the Russian by S. Smith) | DOI | MR | Zbl
[29] Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth, Commun. Pure Appl. Anal., Volume 18 (2019) no. 6, pp. 2923–2960 | MR | Zbl
[30] Lipschitz regularity results for nonlinear strictly elliptic equations and applications, J. Differ. Equ., Volume 263 (2017) no. 7, pp. 4324–4354 | MR | Zbl
[31] Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Anal. Math., Volume 45 (1985), pp. 234–254 | MR | Zbl
[32] Global properties of transition probabilities of singular diffusions, Teor. Veroâtn. Primen., Volume 54 (2009) no. 1, pp. 116–148 | MR | Zbl
[33] Weak solutions to Fokker-Planck equations and mean field games, Arch. Ration. Mech. Anal., Volume 216 (2015) no. 1, pp. 1–62 | DOI | MR | Zbl
[34] Global Lipschitz regularizing effects for linear and nonlinear parabolic equations, J. Math. Pures Appl. (9), Volume 100 (2013) no. 5, pp. 633–686 | DOI | MR | Zbl
[35] The profile of boundary gradient blowup for the diffusive Hamilton-Jacobi equation, Int. Math. Res. Not. IMRN (2017) no. 17, pp. 5260–5301 | MR | Zbl
[36] Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, J. Math. Anal. Appl., Volume 256 (2001) no. 2, pp. 405–430 | DOI | MR | Zbl
[37] Contributions to Nonlinear Functional Analysis, Proc. Sympos., Gradient estimates for solutions of nonlinear elliptic and parabolic equations, Academic Press, New York (1971), pp. 565–601 (Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) | MR | Zbl
[38] Weakly Differentiable Functions – Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989 | DOI | MR | Zbl
Cité par Sources :