Thin film liquid crystals with oblique anchoring and boojums
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 817-853.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study a two-dimensional variational problem which arises as a thin-film limit of the Landau-de Gennes energy of nematic liquid crystals. We impose an oblique angle condition for the nematic director on the boundary, via boundary penalization (weak anchoring.) We show that for strong anchoring strength (relative to the usual Ginzburg-Landau length scale parameter), defects will occur in the interior, as in the case of strong (Dirichlet) anchoring, but for weaker anchoring strength all defects will occur on the boundary. These defects will each carry a fractional winding number; such boundary defects are known as “boojums”. The boojums will occur in ordered pairs along the boundary; for angle α(0,π2), they serve to reduce the winding of the phase by steps of 2α and (2π2α) in order to avoid the formation of interior defects. We determine the number and location of the defects via a Renormalized Energy and numerical simulations.

DOI : 10.1016/j.anihpc.2020.02.002
Mots-clés : Calculus of variations, Partial differential equations, Liquid crystals, Defects
Alama, Stan 1 ; Bronsard, Lia 1 ; Golovaty, Dmitry 2

1 Department of Mathematics and Statistics, McMaster University, Hamilton, ON, L8S 4K1, Canada
2 Department of Mathematics, University of Akron, Akron, OH 44325, United States of America
@article{AIHPC_2020__37_4_817_0,
     author = {Alama, Stan and Bronsard, Lia and Golovaty, Dmitry},
     title = {Thin film liquid crystals with oblique anchoring and boojums},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {817--853},
     publisher = {Elsevier},
     volume = {37},
     number = {4},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.02.002},
     mrnumber = {4104827},
     zbl = {1446.76066},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.02.002/}
}
TY  - JOUR
AU  - Alama, Stan
AU  - Bronsard, Lia
AU  - Golovaty, Dmitry
TI  - Thin film liquid crystals with oblique anchoring and boojums
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 817
EP  - 853
VL  - 37
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.02.002/
DO  - 10.1016/j.anihpc.2020.02.002
LA  - en
ID  - AIHPC_2020__37_4_817_0
ER  - 
%0 Journal Article
%A Alama, Stan
%A Bronsard, Lia
%A Golovaty, Dmitry
%T Thin film liquid crystals with oblique anchoring and boojums
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 817-853
%V 37
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.02.002/
%R 10.1016/j.anihpc.2020.02.002
%G en
%F AIHPC_2020__37_4_817_0
Alama, Stan; Bronsard, Lia; Golovaty, Dmitry. Thin film liquid crystals with oblique anchoring and boojums. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 817-853. doi : 10.1016/j.anihpc.2020.02.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.02.002/

[1] Alama, S.; Bronsard, L.; Galvão Sousa, B. Weak anchoring for a two-dimensional liquid crystal, Nonlinear Anal., Volume 119 (2015), pp. 74–97 | DOI | MR | Zbl

[2] S. Alama, L. Bronsard, D. Golovaty, X. Lamy, Saturn ring defect around a spherical particle immersed in nematic liquid crystal, preprint, 2020. | MR

[3] Bauman, P.; Park, J.; Phillips, D. Analysis of nematic liquid crystals with disclination lines, Arch. Ration. Mech. Anal., Volume 205 (2012), pp. 795–826 | DOI | MR | Zbl

[4] Bethuel, F.; Brezis, H.; Hélein, F. Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13, Birkhäuser Boston Inc., Boston, MA, 1994 | DOI | MR | Zbl

[5] Desimone, A.; Kohn, R.V.; Müller, S.; Otto, F. A reduced theory for thin-film micromagnetics, Commun. Pure Appl. Math., Volume 55 (2002), pp. 1408–1460 | DOI | MR | Zbl

[6] Golovaty, D.; Montero, J.A.; Sternberg, P. Dimension reduction for the Landau-de Gennes model in planar nematic thin films, J. Nonlinear Sci., Volume 25 (2015), pp. 1431–1451 | DOI | MR | Zbl

[7] Golovaty, D.; Montero, J.A.; Sternberg, P. Dimension reduction for the Landau–de Gennes model on curved nematic thin films, J. Nonlinear Sci., Volume 27 (2017), pp. 1905–1932 | DOI | MR | Zbl

[8] Jerrard, R.L. Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal., Volume 30 (1999), pp. 721–746 | DOI | MR | Zbl

[9] Kurzke, M. Boundary vortices in thin magnetic films, Calc. Var. Partial Differ. Equ., Volume 26 (2006), pp. 1–28 | DOI | MR | Zbl

[10] Majumdar, A.; Zarnescu, A. Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 227–280 | DOI | MR | Zbl

[11] Moser, R. On the energy of domain walls in ferromagnetism, Interfaces Free Bound., Volume 11 (2009), pp. 399–419 | DOI | MR | Zbl

[12] Golovaty, D.; Novack, M.; Sternberg, P.; Venkatraman, R. A model problem for nematic-isotropic transitions with highly disparate elastic constants, 2018 | arXiv

[13] Golovaty, D.; Kim, Y.-K.; Lavrentovich, O.D.; Novack, M.; Sternberg, P. A model problem for nematic-isotropic transitions with highly disparate elastic constants, 2019 | arXiv

[14] Volovik, G.E.; Lavrentovih, O.D. Topological dynamics of defects: boojums in nematic drops, Zh. Eksp. Teor. Fiz., Volume 85 (December 1983), pp. 1997–2010

[15] Mottram, N.; Newton, C. Introduction to Q-tensor theory, University of Strathclyde (2004), pp. 10 (Department of Mathematics Research Reports, 2004)

[16] Rivière, T. Asymptotic analysis for the Ginzburg-Landau equations, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Volume 2 (1999), pp. 537–575 | MR | Zbl

[17] Sandier, E. Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., Volume 152 (1998), pp. 379–403 | DOI | MR | Zbl

[18] Struwe, M. On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differ. Integral Equ., Volume 7 (1994), pp. 1613–1624 | MR | Zbl

[19] Tasinkevych, M.; Silvestre, N.; Da Gama, M.T. Liquid crystal boojum-colloids, New J. Phys., Volume 14 (2012) | DOI

[20] Teixeira, P.I.C.; Sluckin, T.J.; Sullivan, D.E. Landau–de gennes theory of anchoring transitions at a nematic liquid crystal–substrate interface, Liq. Cryst., Volume 14 (1993), pp. 1243–1253

[21] Volovik, G.; Lavrentovich, O. Topological dynamics of defects: boojums in nematic drops, Zh. Èksp. Teor. Fiz., Volume 85 (1983), pp. 1997–2010

[22] COMSOL Multiphysics®, v. 5.3. http://www.comsol.com/. COMSOL AB, Stockholm, Sweden.

Cité par Sources :