We establish short-time existence of the smooth solution to the fractional mean curvature flow when the initial set is bounded and -regular. We provide the same result also for the volume preserving fractional mean curvature flow.
@article{AIHPC_2020__37_4_983_0, author = {Julin, Vesa and La Manna, Domenico Angelo}, title = {Short time existence of the classical solution to the fractional mean curvature flow}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {983--1016}, publisher = {Elsevier}, volume = {37}, number = {4}, year = {2020}, doi = {10.1016/j.anihpc.2020.02.007}, mrnumber = {4104832}, zbl = {1501.53096}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.02.007/} }
TY - JOUR AU - Julin, Vesa AU - La Manna, Domenico Angelo TI - Short time existence of the classical solution to the fractional mean curvature flow JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 983 EP - 1016 VL - 37 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.02.007/ DO - 10.1016/j.anihpc.2020.02.007 LA - en ID - AIHPC_2020__37_4_983_0 ER -
%0 Journal Article %A Julin, Vesa %A La Manna, Domenico Angelo %T Short time existence of the classical solution to the fractional mean curvature flow %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 983-1016 %V 37 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.02.007/ %R 10.1016/j.anihpc.2020.02.007 %G en %F AIHPC_2020__37_4_983_0
Julin, Vesa; La Manna, Domenico Angelo. Short time existence of the classical solution to the fractional mean curvature flow. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 983-1016. doi : 10.1016/j.anihpc.2020.02.007. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.02.007/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | DOI | MR | Zbl
[2] Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl
[3] Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 13 (2014), pp. 609–639 | MR | Zbl
[4] Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay, J. Reine Angew. Math., Volume 745 (2018), pp. 253–280 | MR | Zbl
[5] Nonlocal minimal surfaces, Commun. Pure Appl. Math., Volume 63 (2010), pp. 1111–1144 | DOI | MR | Zbl
[6] Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Ration. Mech. Anal., Volume 195 (2010), pp. 1–23 | DOI | MR | Zbl
[7] Fattening and nonfattening phenomena for planar nonlocal curvature flows, Math. Ann., Volume 375 (2019), pp. 687–736 | DOI | MR | Zbl
[8] A nonlocal mean curvature flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal., Volume 44 (2012), pp. 4048–4077 | DOI | MR | Zbl
[9] Nonlocal curvature flows, Arch. Ration. Mech. Anal., Volume 218 (2015), pp. 1263–1329 | DOI | MR | Zbl
[10] Some results on anisotropic fractional mean curvature flows, Interfaces Free Bound., Volume 19 (2017), pp. 393–415 | DOI | MR | Zbl
[11] Neckpinch singularities in fractional mean curvature flows, Proc. Am. Math. Soc., Volume 146 (2018), pp. 2637–2646 | DOI | MR | Zbl
[12] E. Cinti, C. Sinestrari, E. Valdinoci, Convex sets evolving by volume preserving fractional mean curvature flows, preprint, 2018. | MR
[13] Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature, J. Reine Angew. Math., Volume 741 (2018), pp. 275–294 | MR | Zbl
[14] Nonlocal -minimal surfaces and Lawson cones, J. Differ. Geom., Volume 109 (2018), pp. 111–175 | DOI | MR | Zbl
[15] Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998 | MR | Zbl
[16] Motion of level sets by mean curvature. II, Trans. Am. Math. Soc., Volume 330 (1992), pp. 321–332 | DOI | MR | Zbl
[17] Isoperimetry and stability properties of balls with respect to nonlocal energies, Commun. Math. Phys., Volume 336 (2015), pp. 441–507 | DOI | MR | Zbl
[18] Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., Volume 255 (2008), pp. 3407–3430 | DOI | MR | Zbl
[19] A quantitative isoperimetric inequality for fractional perimeters, J. Funct. Anal., Volume 261 (2011), pp. 697–715 | DOI | MR | Zbl
[20] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl
[21] Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., Volume 20 (1984), pp. 237–266 | DOI | MR | Zbl
[22] The volume preserving mean curvature flow, J. Reine Angew. Math., Volume 382 (1987), pp. 35–48 | MR | Zbl
[23] Calculus of Variations and Geometric Evolution Problems, Geometric evolution equations for hypersurfaces, Springer-Verlag, Berlin (1999), pp. 45–84 (Cetraro, 1996) | MR | Zbl
[24] Level set approach for fractional mean curvature flows, Interfaces Free Bound., Volume 11 (2009), pp. 153–176 | DOI | MR | Zbl
[25] Riemannian Manifolds. An Introduction to Curvature, Graduate Texts in Mathematics, vol. 176, Springer-Verlag, New York, 1997 | DOI | MR | Zbl
[26] Lecture Notes on Mean Curvature Flow, Progress in Mathematics, vol. 290, Birkhäuser/Springer, Basel, 2011 | DOI | MR | Zbl
[27] On Hölder solutions of the integro-differential Zakai equation, Stoch. Process. Appl., Volume 119 (2009), pp. 3319–3355 | DOI | MR | Zbl
[28] On the evolution by fractional mean curvature, Commun. Anal. Geom., Volume 27 (2019) | DOI | MR | Zbl
[29] Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differ. Equ., Volume 48 (2013), pp. 33–39 | DOI | MR | Zbl
Cité par Sources :