New concentration phenomena for a class of radial fully nonlinear equations
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1109-1141.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirichlet problems in a ball, driven by the extremal Pucci's operators and with a power nonlinear term. We first determine a new critical exponent related to the existence or nonexistence of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as the exponents approach the critical values, showing that new concentration phenomena occur. Finally we define a suitable weighted energy for these solutions and compute its limit value.

DOI : 10.1016/j.anihpc.2020.03.003
Classification : 35J60, 35B50, 34B15
Mots-clés : Fully nonlinear Dirichlet problems, Radial solutions, Critical exponents, Sign-changing solutions, Asymptotic analysis
Galise, Giulio 1 ; Iacopetti, Alessandro 2 ; Leoni, Fabiana 1 ; Pacella, Filomena 1

1 Dipartimento di Matematica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy
2 Département de Mathématique, Université Libre de Bruxelles, Campus de la Plaine - CP214 boulevard du Triomphe, 1050, Bruxelles, Belgium
@article{AIHPC_2020__37_5_1109_0,
     author = {Galise, Giulio and Iacopetti, Alessandro and Leoni, Fabiana and Pacella, Filomena},
     title = {New concentration phenomena for a class of radial fully nonlinear equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1109--1141},
     publisher = {Elsevier},
     volume = {37},
     number = {5},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.03.003},
     mrnumber = {4138228},
     zbl = {1473.35227},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.003/}
}
TY  - JOUR
AU  - Galise, Giulio
AU  - Iacopetti, Alessandro
AU  - Leoni, Fabiana
AU  - Pacella, Filomena
TI  - New concentration phenomena for a class of radial fully nonlinear equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 1109
EP  - 1141
VL  - 37
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.003/
DO  - 10.1016/j.anihpc.2020.03.003
LA  - en
ID  - AIHPC_2020__37_5_1109_0
ER  - 
%0 Journal Article
%A Galise, Giulio
%A Iacopetti, Alessandro
%A Leoni, Fabiana
%A Pacella, Filomena
%T New concentration phenomena for a class of radial fully nonlinear equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 1109-1141
%V 37
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.003/
%R 10.1016/j.anihpc.2020.03.003
%G en
%F AIHPC_2020__37_5_1109_0
Galise, Giulio; Iacopetti, Alessandro; Leoni, Fabiana; Pacella, Filomena. New concentration phenomena for a class of radial fully nonlinear equations. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1109-1141. doi : 10.1016/j.anihpc.2020.03.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.003/

[1] Atkinson, F.V.; Brezis, H.; Peletier, L.A. Nodal solutions of elliptic equations with critical Sobolev exponents, Differ. Integral Equ., Volume 85 (1990) no. 1, pp. 151–170 | MR | Zbl

[2] Atkinson, F.V.; Peletier, L.A. Emden–Fowler equations involving critical exponents, Nonlinear Anal., Volume 10 (1986) no. 8, pp. 755–776 | DOI | MR | Zbl

[3] Ben Ayed, M.; El Mehdi, K.; Pacella, F. Classification of low energy sign-changing solutions of an almost critical problem, J. Funct. Anal., Volume 250 (2007), pp. 347–373 | DOI | MR | Zbl

[4] Birindelli, I.; Galise, G.; Leoni, F.; Pacella, F. Concentration and energy invariance for a class of fully nonlinear elliptic equations, Calc. Var. Partial Differ. Equ., Volume 57 (2018), pp. 158 | DOI | MR | Zbl

[5] Busca, J.; Esteban, M.J.; Quaas, A. Nonlinear eigenvalues and bifurcation problems for Pucci's operators, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 2, pp. 187–206 | Numdam | MR | Zbl

[6] Da Lio, F.; Sirakov, B. Symmetry properties of viscosity solutions to nonlinear uniformly elliptic equations, J. Eur. Math. Soc., Volume 9 (2007), pp. 317–330 | DOI | MR | Zbl

[7] De Marchis, F.; Ianni, I.; Pacella, F. A Morse index formula for radial solutions of Lane–Emden problems, Adv. Math., Volume 322 (2017), pp. 682–737 | DOI | MR | Zbl

[8] Felmer, P.L.; Quaas, A. On critical exponents for the Pucci's extremal operators, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003) no. 5, pp. 846–865 | Numdam | MR | Zbl

[9] Galise, G.; Leoni e, F.; Pacella, F. Existence results for fully nonlinear equations in radial domains, Commun. Partial Differ. Equ., Volume 42 (2017) no. 5, pp. 757–779 | DOI | MR | Zbl

[10] Galise, G.; Iacopetti, A.; Leoni, F. Liouville-type results in exterior domains for radial solutions of fully nonlinear equations (preprint) | arXiv | MR

[11] Iacopetti, A. Asymptotic analysis for radial sign-changing solutions of the Brezis-Nirenberg problem, Ann. Mat. Pura Appl., Volume 194 (2015) no. 6, pp. 1649–1682 | DOI | MR | Zbl

[12] Iacopetti, A.; Pacella, F. Asymptotic analysis for radial sign-changing solutions of the Brezis-Nirenberg problem in low dimensions, Prog. Nonlinear Differ. Equ. Appl., Volume 86 (2015), pp. 325–343 | MR | Zbl

[13] Iacopetti, A.; Vaira, G. Sign-changing tower of bubbles for the Brezis-Nirenberg problem, Commun. Contemp. Math., Volume 18 (2016) | DOI | MR | Zbl

[14] Iacopetti, A.; Vaira, G. Sign-changing blowing-up solutions for the Brezis–Nirenberg problem in dimensions four and five, Ann. Sc. Norm. Super. Pisa, Volume XVIII (2018) no. 1, pp. 1–38 | MR | Zbl

Cité par Sources :