We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirichlet problems in a ball, driven by the extremal Pucci's operators and with a power nonlinear term. We first determine a new critical exponent related to the existence or nonexistence of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as the exponents approach the critical values, showing that new concentration phenomena occur. Finally we define a suitable weighted energy for these solutions and compute its limit value.
Mots-clés : Fully nonlinear Dirichlet problems, Radial solutions, Critical exponents, Sign-changing solutions, Asymptotic analysis
@article{AIHPC_2020__37_5_1109_0, author = {Galise, Giulio and Iacopetti, Alessandro and Leoni, Fabiana and Pacella, Filomena}, title = {New concentration phenomena for a class of radial fully nonlinear equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1109--1141}, publisher = {Elsevier}, volume = {37}, number = {5}, year = {2020}, doi = {10.1016/j.anihpc.2020.03.003}, mrnumber = {4138228}, zbl = {1473.35227}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.003/} }
TY - JOUR AU - Galise, Giulio AU - Iacopetti, Alessandro AU - Leoni, Fabiana AU - Pacella, Filomena TI - New concentration phenomena for a class of radial fully nonlinear equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 1109 EP - 1141 VL - 37 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.003/ DO - 10.1016/j.anihpc.2020.03.003 LA - en ID - AIHPC_2020__37_5_1109_0 ER -
%0 Journal Article %A Galise, Giulio %A Iacopetti, Alessandro %A Leoni, Fabiana %A Pacella, Filomena %T New concentration phenomena for a class of radial fully nonlinear equations %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 1109-1141 %V 37 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.003/ %R 10.1016/j.anihpc.2020.03.003 %G en %F AIHPC_2020__37_5_1109_0
Galise, Giulio; Iacopetti, Alessandro; Leoni, Fabiana; Pacella, Filomena. New concentration phenomena for a class of radial fully nonlinear equations. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1109-1141. doi : 10.1016/j.anihpc.2020.03.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.003/
[1] Nodal solutions of elliptic equations with critical Sobolev exponents, Differ. Integral Equ., Volume 85 (1990) no. 1, pp. 151–170 | MR | Zbl
[2] Emden–Fowler equations involving critical exponents, Nonlinear Anal., Volume 10 (1986) no. 8, pp. 755–776 | DOI | MR | Zbl
[3] Classification of low energy sign-changing solutions of an almost critical problem, J. Funct. Anal., Volume 250 (2007), pp. 347–373 | DOI | MR | Zbl
[4] Concentration and energy invariance for a class of fully nonlinear elliptic equations, Calc. Var. Partial Differ. Equ., Volume 57 (2018), pp. 158 | DOI | MR | Zbl
[5] Nonlinear eigenvalues and bifurcation problems for Pucci's operators, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 2, pp. 187–206 | Numdam | MR | Zbl
[6] Symmetry properties of viscosity solutions to nonlinear uniformly elliptic equations, J. Eur. Math. Soc., Volume 9 (2007), pp. 317–330 | DOI | MR | Zbl
[7] A Morse index formula for radial solutions of Lane–Emden problems, Adv. Math., Volume 322 (2017), pp. 682–737 | DOI | MR | Zbl
[8] On critical exponents for the Pucci's extremal operators, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003) no. 5, pp. 846–865 | Numdam | MR | Zbl
[9] Existence results for fully nonlinear equations in radial domains, Commun. Partial Differ. Equ., Volume 42 (2017) no. 5, pp. 757–779 | DOI | MR | Zbl
[10] Liouville-type results in exterior domains for radial solutions of fully nonlinear equations (preprint) | arXiv | MR
[11] Asymptotic analysis for radial sign-changing solutions of the Brezis-Nirenberg problem, Ann. Mat. Pura Appl., Volume 194 (2015) no. 6, pp. 1649–1682 | DOI | MR | Zbl
[12] Asymptotic analysis for radial sign-changing solutions of the Brezis-Nirenberg problem in low dimensions, Prog. Nonlinear Differ. Equ. Appl., Volume 86 (2015), pp. 325–343 | MR | Zbl
[13] Sign-changing tower of bubbles for the Brezis-Nirenberg problem, Commun. Contemp. Math., Volume 18 (2016) | DOI | MR | Zbl
[14] Sign-changing blowing-up solutions for the Brezis–Nirenberg problem in dimensions four and five, Ann. Sc. Norm. Super. Pisa, Volume XVIII (2018) no. 1, pp. 1–38 | MR | Zbl
Cité par Sources :