The Calderón problem for quasilinear elliptic equations
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1143-1166.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we show uniqueness of the conductivity for the quasilinear Calderón's inverse problem. The nonlinear conductivity depends, in a nonlinear fashion, of the potential itself and its gradient. Under some structural assumptions on the direct problem, a real-valued conductivity allowing a small analytic continuation to the complex plane induce a unique Dirichlet-to-Neumann (DN) map. The method of proof considers some complex-valued, linear test functions based on a point of the boundary of the domain, and a linearization of the DN map placed at these particular set of solutions.

DOI : 10.1016/j.anihpc.2020.03.004
Classification : 35R30, 35J62
Mots-clés : Calderón problem, Inverse problem, Quasilinear conductivity
Muñoz, Claudio 1 ; Uhlmann, Gunther 2

1 CNRS and Departamento de Ingeniería Matemática DIM, Universidad de Chile, Chile
2 Department of Mathematics, University of Washington, Box 354350 Seattle, WA 98195, USA
@article{AIHPC_2020__37_5_1143_0,
     author = {Mu\~noz, Claudio and Uhlmann, Gunther},
     title = {The {Calder\'on} problem for quasilinear elliptic equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1143--1166},
     publisher = {Elsevier},
     volume = {37},
     number = {5},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.03.004},
     mrnumber = {4138229},
     zbl = {1457.35093},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.004/}
}
TY  - JOUR
AU  - Muñoz, Claudio
AU  - Uhlmann, Gunther
TI  - The Calderón problem for quasilinear elliptic equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 1143
EP  - 1166
VL  - 37
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.004/
DO  - 10.1016/j.anihpc.2020.03.004
LA  - en
ID  - AIHPC_2020__37_5_1143_0
ER  - 
%0 Journal Article
%A Muñoz, Claudio
%A Uhlmann, Gunther
%T The Calderón problem for quasilinear elliptic equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 1143-1166
%V 37
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.004/
%R 10.1016/j.anihpc.2020.03.004
%G en
%F AIHPC_2020__37_5_1143_0
Muñoz, Claudio; Uhlmann, Gunther. The Calderón problem for quasilinear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1143-1166. doi : 10.1016/j.anihpc.2020.03.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.004/

[1] Astala, K.; Päivärinta, L. Calderón's inverse conductivity problem in the plane, Ann. Math., Volume 163 (2006), pp. 265–299 | DOI | MR | Zbl

[2] Barton, A. Elliptic partial differential equations with complex coefficients, U. of Chicago, Nov. 2009 (Ph.D. Thesis) | arXiv | MR

[3] Calderón, A.P. Seminar on Numerical Analysis and Its Applications to Continuum Physics, On an inverse boundary value problem, Soc. Brasil. Mat., Rio de Janeiro (1980), pp. 65–73 (Río de Janeiro, 1980) | MR | Zbl

[4] Gilbarg, D.; Trudinger, N. Ellpitic Equations of Second Order, Springer-Verlag, Berlin Heidelberg, 2001 (ISSN 1431-0821) | MR

[5] Gunning, R.C. Introduction to Holomorphic Functions of Several Variables, vol. I, CRC Press, May 1990 | MR | Zbl

[6] Hervas, D.; Sun, Z. An inverse boundary value problem for quasilinear elliptic operators, Commun. Partial Differ. Equ., Volume 27 (2002) no. 11–12, pp. 2449–2490 | MR | Zbl

[7] Hofmann, S.; Kenig, C.E.; Mayboroda, Svitlana; Pipher, J. Square function/non tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators, J. Am. Math. Soc., Volume 28 (2015), pp. 483–529 | MR | Zbl

[8] Isakov, V. On uniqueness in inverse problems for semilinear parabolic equations, Arch. Ration. Mech. Anal., Volume 124 (1993), pp. 1–12 | DOI | MR | Zbl

[9] Ladyzenskaja, O.A.; Ural'ceva, N.N. Equations aux dérivées partielles de type elliptique, Dunod, Paris, 1968 | Zbl

[10] Nachman, A. Reconstructions from boundary measurements, Ann. Math., Volume 128 (1988), pp. 531–576 | DOI | MR | Zbl

[11] Sylvester, J.; Uhlmann, G. A uniqueness theorem for an inverse boundary value problem in electrical prospection, Commun. Pure Appl. Math., Volume 39 (1986), pp. 92–112 | DOI | MR | Zbl

[12] Sylvester, J.; Uhlmann, G. A global uniqueness theorem for an inverse boundary value problem, Ann. Math. (2), Volume 125 (1987) no. 1, pp. 153–169 | DOI | MR | Zbl

[13] Sun, Z. On a quasilinear inverse boundary value problem, Math. Z., Volume 221 (1996), pp. 293–305 | MR | Zbl

[14] Sun, Z. Conjectures in inverse boundary value problems for quasilinear elliptic equations, CUBO, Volume 7 (2005), pp. 65–73 | MR | Zbl

[15] Sun, Z.; Uhlmann, G. Inverse problems in quasilinear anisotropic media, Am. J. Math., Volume 119 (1997), pp. 771–797 | MR | Zbl

[16] Uhlmann, G. Electrical impedance tomography and Calderón's problem, Inverse Probl., Volume 25 (2009) no. 12 | DOI | MR | Zbl

Cité par Sources :