In this paper we show uniqueness of the conductivity for the quasilinear Calderón's inverse problem. The nonlinear conductivity depends, in a nonlinear fashion, of the potential itself and its gradient. Under some structural assumptions on the direct problem, a real-valued conductivity allowing a small analytic continuation to the complex plane induce a unique Dirichlet-to-Neumann (DN) map. The method of proof considers some complex-valued, linear test functions based on a point of the boundary of the domain, and a linearization of the DN map placed at these particular set of solutions.
Mots-clés : Calderón problem, Inverse problem, Quasilinear conductivity
@article{AIHPC_2020__37_5_1143_0, author = {Mu\~noz, Claudio and Uhlmann, Gunther}, title = {The {Calder\'on} problem for quasilinear elliptic equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1143--1166}, publisher = {Elsevier}, volume = {37}, number = {5}, year = {2020}, doi = {10.1016/j.anihpc.2020.03.004}, mrnumber = {4138229}, zbl = {1457.35093}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.004/} }
TY - JOUR AU - Muñoz, Claudio AU - Uhlmann, Gunther TI - The Calderón problem for quasilinear elliptic equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 1143 EP - 1166 VL - 37 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.004/ DO - 10.1016/j.anihpc.2020.03.004 LA - en ID - AIHPC_2020__37_5_1143_0 ER -
%0 Journal Article %A Muñoz, Claudio %A Uhlmann, Gunther %T The Calderón problem for quasilinear elliptic equations %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 1143-1166 %V 37 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.004/ %R 10.1016/j.anihpc.2020.03.004 %G en %F AIHPC_2020__37_5_1143_0
Muñoz, Claudio; Uhlmann, Gunther. The Calderón problem for quasilinear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1143-1166. doi : 10.1016/j.anihpc.2020.03.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.004/
[1] Calderón's inverse conductivity problem in the plane, Ann. Math., Volume 163 (2006), pp. 265–299 | DOI | MR | Zbl
[2] Elliptic partial differential equations with complex coefficients, U. of Chicago, Nov. 2009 (Ph.D. Thesis) | arXiv | MR
[3] Seminar on Numerical Analysis and Its Applications to Continuum Physics, On an inverse boundary value problem, Soc. Brasil. Mat., Rio de Janeiro (1980), pp. 65–73 (Río de Janeiro, 1980) | MR | Zbl
[4] Ellpitic Equations of Second Order, Springer-Verlag, Berlin Heidelberg, 2001 (ISSN 1431-0821) | MR
[5] Introduction to Holomorphic Functions of Several Variables, vol. I, CRC Press, May 1990 | MR | Zbl
[6] An inverse boundary value problem for quasilinear elliptic operators, Commun. Partial Differ. Equ., Volume 27 (2002) no. 11–12, pp. 2449–2490 | MR | Zbl
[7] Square function/non tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators, J. Am. Math. Soc., Volume 28 (2015), pp. 483–529 | MR | Zbl
[8] On uniqueness in inverse problems for semilinear parabolic equations, Arch. Ration. Mech. Anal., Volume 124 (1993), pp. 1–12 | DOI | MR | Zbl
[9] Equations aux dérivées partielles de type elliptique, Dunod, Paris, 1968 | Zbl
[10] Reconstructions from boundary measurements, Ann. Math., Volume 128 (1988), pp. 531–576 | DOI | MR | Zbl
[11] A uniqueness theorem for an inverse boundary value problem in electrical prospection, Commun. Pure Appl. Math., Volume 39 (1986), pp. 92–112 | DOI | MR | Zbl
[12] A global uniqueness theorem for an inverse boundary value problem, Ann. Math. (2), Volume 125 (1987) no. 1, pp. 153–169 | DOI | MR | Zbl
[13] On a quasilinear inverse boundary value problem, Math. Z., Volume 221 (1996), pp. 293–305 | MR | Zbl
[14] Conjectures in inverse boundary value problems for quasilinear elliptic equations, CUBO, Volume 7 (2005), pp. 65–73 | MR | Zbl
[15] Inverse problems in quasilinear anisotropic media, Am. J. Math., Volume 119 (1997), pp. 771–797 | MR | Zbl
[16] Electrical impedance tomography and Calderón's problem, Inverse Probl., Volume 25 (2009) no. 12 | DOI | MR | Zbl
Cité par Sources :