Anisotropic nonlocal diffusion equations with singular forcing
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1167-1183.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We prove existence, uniqueness and regularity of solutions of nonlocal heat equations associated to anisotropic stable diffusion operators. The main features are that the right-hand side has very little regularity and that the spectral measure can be singular in some directions. The proofs require having good enough estimates for the corresponding heat kernels and their derivatives.

DOI : 10.1016/j.anihpc.2020.04.001
Classification : 35R11, 35B65, 35A05
Mots-clés : Non-local diffusion, Anisotropic stable operators, Well-posedness, Regularity, Singular forcing, Heat kernel estimates for Lévy processes
de Pablo, Arturo 1 ; Quirós, Fernando 2 ; Rodríguez, Ana 3

1 Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain
2 Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
3 Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, 28040 Madrid, Spain
@article{AIHPC_2020__37_5_1167_0,
     author = {de Pablo, Arturo and Quir\'os, Fernando and Rodr{\'\i}guez, Ana},
     title = {Anisotropic nonlocal diffusion equations with singular forcing},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1167--1183},
     publisher = {Elsevier},
     volume = {37},
     number = {5},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.04.001},
     mrnumber = {4138230},
     zbl = {1454.35411},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.001/}
}
TY  - JOUR
AU  - de Pablo, Arturo
AU  - Quirós, Fernando
AU  - Rodríguez, Ana
TI  - Anisotropic nonlocal diffusion equations with singular forcing
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 1167
EP  - 1183
VL  - 37
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.001/
DO  - 10.1016/j.anihpc.2020.04.001
LA  - en
ID  - AIHPC_2020__37_5_1167_0
ER  - 
%0 Journal Article
%A de Pablo, Arturo
%A Quirós, Fernando
%A Rodríguez, Ana
%T Anisotropic nonlocal diffusion equations with singular forcing
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 1167-1183
%V 37
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.001/
%R 10.1016/j.anihpc.2020.04.001
%G en
%F AIHPC_2020__37_5_1167_0
de Pablo, Arturo; Quirós, Fernando; Rodríguez, Ana. Anisotropic nonlocal diffusion equations with singular forcing. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1167-1183. doi : 10.1016/j.anihpc.2020.04.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.001/

[1] Barrios, B.; Peral, I.; Soria, F.; Valdinoci, E. A Widder's type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 2, pp. 629–650 | DOI | MR | Zbl

[2] Blumenthal, R.M.; Getoor, R.K. Some theorems on stable processes, Trans. Am. Math. Soc., Volume 95 (1960) no. 2, pp. 263–273 | DOI | MR | Zbl

[3] Bogdan, K.; Sztonyk, P. Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian, Stud. Math., Volume 181 (2007) no. 2, pp. 101–123 | DOI | MR | Zbl

[4] Bogdan, K.; Sztonyk, P.; Knopova, V. Heat kernel of anisotropic nonlocal operators (preprint) | arXiv | MR

[5] Felsinger, M.; Kassmann, M. Local regularity for parabolic nonlocal operators, Commun. Partial Differ. Equ., Volume 38 (2013) no. 9, pp. 1539–1573 | DOI | MR | Zbl

[6] Fernández-Real, X.; Ros-Oton, X. Regularity theory for general stable operators: parabolic equations, J. Funct. Anal., Volume 272 (2017) no. 10, pp. 4165–4221 | DOI | MR | Zbl

[7] Glowacki, P. Lipschitz continuity of densities of stable semigroups of measures, Colloq. Math., Volume 66 (1993) no. 1, pp. 29–47 | DOI | MR | Zbl

[8] Glowacki, P.; Hebisch, W. Pointwise estimates for densities of stable semigroups of measures, Stud. Math., Volume 104 (1993) no. 3, pp. 243–258 | DOI | MR | Zbl

[9] Hairer, M. Rough stochastic PDEs, Commun. Pure Appl. Math., Volume 64 (2011) no. 11, pp. 1547–1585 | MR | Zbl

[10] Kassmann, M.; Schwab, R.W. Regularity results for nonlocal parabolic equations, Riv. Mat. Univ. Parma, Volume 5 (2014), pp. 183–212 | MR | Zbl

[11] Kulczycki, T.; Ryznar, M. Gradient estimates of Dirichlet heat kernels for unimodal Lévy processes, Math. Nachr., Volume 291 (2018) no. 2–3, pp. 374–397 | MR | Zbl

[12] Otto, F.; Sauer, J.; Smith, S.; Weber, H. Parabolic equations with rough coefficients and singular forcing (preprint) | arXiv

[13] de Pablo, A.; Quirós, F.; Rodríguez, A.; Vázquez, J.L. Classical solutions for a logarithmic fractional diffusion equation, J. Math. Pures Appl. (9), Volume 101 (2014) no. 6, pp. 901–924 | DOI | MR | Zbl

[14] Pruitt, W.E.; Taylor, S.J. The potential kernel and hitting probabilities for the general stable process in RN , Trans. Am. Math. Soc., Volume 146 (1969), pp. 299–321 | MR | Zbl

[15] Ros-Oton, X. Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., Volume 60 (2016) no. 1, pp. 3–26 | MR | Zbl

[16] Samorodnitsky, G.; Taqqu, M.S. Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance, Stochastic Modeling, Chapman & Hall, New York, 1994 | MR | Zbl

[17] Vázquez, J.L.; de Pablo, A.; Quirós, F.; Rodríguez, A. Classical solutions and higher regularity for nonlinear fractional diffusion equations, J. Eur. Math. Soc., Volume 19 (2017) no. 7, pp. 1949–1975 | DOI | MR | Zbl

[18] Watanabe, T. Asymptotic estimates of multi-dimensional stable densities and their applications, Trans. Am. Math. Soc., Volume 359 (2007) no. 6, pp. 2851–2879 | DOI | MR | Zbl

Cité par Sources :