Global existence of weak solutions for the anisotropic compressible Stokes system
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 6, pp. 1271-1297.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper, we study the problem of global existence of weak solutions for the quasi-stationary compressible Stokes equations with an anisotropic viscous tensor. The key idea is a new identity that we obtain by comparing the limit of the equations of the energies associated to a sequence of weak-solutions with the energy equation associated to the system verified by the limit of the sequence of weak-solutions. In the context of stability of weak solutions, this allows us to construct a defect measure which is used to prove compactness for the density and therefore allowing us to identify the pressure in the limiting model. By doing so we avoid the use of the so-called effective flux. Using this new tool, we solve an open problem namely global existence of solutions à la Leray for such a system without assuming any restriction on the anisotropy amplitude. This provides a flexible and natural method to treat compressible quasilinear Stokes systems which are important for instance in biology, porous media, supra-conductivity or other applications in the low Reynolds number regime.

DOI : 10.1016/j.anihpc.2020.04.003
Classification : 35Q35, 35B25, 76T20
Mots-clés : Compressible quasi-stationary Stokes equations, Anisotropic viscous tensor, Global weak solutions
Bresch, D. 1 ; Burtea, C. 2

1 Univ. Grenoble Alpes, Univ. Savoie Mont-Blanc, CNRS, LAMA, Chambéry, France
2 Université de Paris and Institut de mathématiques de Jussieu-Paris Rive Gauche, Bâtiment Sophie Germain, Bureau 727, 8 place Aurélie Nemours, 75013 Paris, France
@article{AIHPC_2020__37_6_1271_0,
     author = {Bresch, D. and Burtea, C.},
     title = {Global existence of weak solutions for the anisotropic compressible {Stokes} system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1271--1297},
     publisher = {Elsevier},
     volume = {37},
     number = {6},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.04.003},
     mrnumber = {4168917},
     zbl = {1456.35160},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.003/}
}
TY  - JOUR
AU  - Bresch, D.
AU  - Burtea, C.
TI  - Global existence of weak solutions for the anisotropic compressible Stokes system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 1271
EP  - 1297
VL  - 37
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.003/
DO  - 10.1016/j.anihpc.2020.04.003
LA  - en
ID  - AIHPC_2020__37_6_1271_0
ER  - 
%0 Journal Article
%A Bresch, D.
%A Burtea, C.
%T Global existence of weak solutions for the anisotropic compressible Stokes system
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 1271-1297
%V 37
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.003/
%R 10.1016/j.anihpc.2020.04.003
%G en
%F AIHPC_2020__37_6_1271_0
Bresch, D.; Burtea, C. Global existence of weak solutions for the anisotropic compressible Stokes system. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 6, pp. 1271-1297. doi : 10.1016/j.anihpc.2020.04.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.003/

[1] Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer Science & Business Media, 2011 | DOI | MR | Zbl

[2] Bernardi, C.; Pironneau, O. On the shallow water equations at low Reynolds number, Commun. Partial Differ. Equ., Volume 16 (1991) no. 1, pp. 59–104 | MR | Zbl

[3] Bresch, D.; Burtea, C. Existence of weak solutions for the anisotropic stationary compressible Navier-Stokes system | arXiv

[4] Bresch, D.; Jabin, P.-E. Global existence of weak solutions for compressible Navier–Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. Math., Volume 188 (2018) no. 2, pp. 577–684 | DOI | MR | Zbl

[5] Bresch, D.; Jabin, P.-E. Global weak solutions of PDEs for compressible media: a compactness criterion to cover new physical situations, Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics, Springer INdAM, vol. 17, 2017, pp. 33–54 | MR

[6] Bresch, D.; Mucha, P.; Zatorska, E. Finite-energy solutions for compressible two-fluid Stokes system, Arch. Ration. Mech. Anal., Volume 232 (2019) no. 2, pp. 987–1029 | DOI | MR | Zbl

[7] Bresch, D.; Nečasová, Š.; Perrin, C. Compression effects in heterogeneous media, J. Éc. Polytech. Math., Volume 6 (2019), pp. 433–467 | DOI | MR | Zbl

[8] Eringen, A.C. On nonlocal fluid mechanics, Int. J. Eng. Sci., Volume 10 (1972) no. 6, pp. 561–575 | DOI | Zbl

[9] Feireisl, E.; Novotný, A.; Petzeltová, H. On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., Volume 3 (2001) no. 4, pp. 358–392 | DOI | MR | Zbl

[10] Frehse, J.; Goj, S.; Málek, J. On a Stokes-like system for mixtures of fluids, SIAM J. Math. Anal., Volume 36 (2005), pp. 1259–1281 | DOI | MR | Zbl

[11] Frehse, J.; Weigant, W. On quasi-stationary models of mixtures of compressible fluids, Appl. Math. (2008) no. 4, pp. 319–345 | DOI | MR | Zbl

[12] Kazhikhov, A.V. The equations of potential flow of compressible viscous fluid at low Reynolds number, Acta Appl. Math., Volume 37 (1994), pp. 71–77 | DOI | MR | Zbl

[13] Kazhikhov, A.V. The equation of potential flows of a compressible viscous fluid at small Reynolds numbers: existence, uniqueness, and stabilization of solutions, Sib. Math. J., Volume 34 (1993) no. 3, pp. 70–80 | DOI | Zbl

[14] Kazhikov, A.V.; Galdi, G.P.; Malek, J.; Necas, J. Progress in Theoretical and Computational Fluid Mechanics, Some new statement for initial boundary value problems for Navier-Stokes equations of viscous gas (1993) (Winter School, Paseky) | MR | Zbl

[15] Lions, P.-L. Mathematical Topics in Fluid Mechanics: vol. 2: Compressible Models, vol. 2, Oxford University Press, 1998 | MR | Zbl

[16] Lions, P.-L. Compacité des solutions des équations de Navier-Stokes compressible isentropiques, C. R. Acad. Sci. Paris, Volume 317 (1993), pp. 115–120 | MR | Zbl

[17] Mamontov, A.E. Well-posedness of a quasistationary model of a viscous compressible fluid, Sib. Math. J., Volume 37 (1996) no. 5, pp. 983–996 | DOI | MR | Zbl

[18] Masmoudi, N.; Zhang, P. Global solutions to vortex density equations arising from sup-conductivity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 4, pp. 441–458 | DOI | Numdam | MR | Zbl

[19] Novotný, A.; Straškraba, I. Introduction to the Mathematical Theory of Compressible Flow, vol. 27, Oxford University Press, 2004 | DOI | MR | Zbl

[20] Ponce, Augusto C. Elliptic PDEs, Measures and Capacities, Tracts in Mathematics, vol. 23, 2016 | DOI | MR

[21] Vaigant, V.A.; Kazhikhov, A.V. Global solutions of equations of potential flows of a compressible viscous fluid for small Reynolds numbers, Differ. Uravn., Volume 30 (1994), pp. 1010–1022 | MR | Zbl

[22] Serre, D. Variations de grande amplitude pour la densité d'un fluide visqueux compressible, Phys. D: Nonlinear Phenom., Volume 48 (1991) no. 1, pp. 113–128 | DOI | MR | Zbl

Cité par Sources :