Nous considérons le problème de Cauchy pour l'équation de Landau non-homogène en espace avec potentiels mous dans le cas de grandes (i.e. non perturbatrices) données initiales. Nour construisons une solution pour toute donnée initiale bornée et mesurable à décroissance polynomiale uniforme dans la variable de vitesse, et qui satisfait une hypothèse technique de borne inférieure (il est toujours permis d'avoir des régions de vide). Pour être unique dans cette famille générale, nous devons supposer que les données initiales sont Hölder continues. Nos hypothèses sont beaucoup plus faibles, en termes de régularité et de décroissance, que les résultats de la littérature sur le caractère bien-posé dans le cas de grandes données. Nous dérivons également un critère de continuation pour nos solutions qui est, pour les potentiels très mous, une amélioration par rapport à l'état de l'art.
We consider the Cauchy problem for the spatially inhomogeneous Landau equation with soft potentials in the case of large (i.e. non-perturbative) initial data. We construct a solution for any bounded, measurable initial data with uniform polynomial decay in the velocity variable, and that satisfies a technical lower bound assumption (but can have vacuum regions). For uniqueness in this weak class, we have to make the additional assumption that the initial data is Hölder continuous. Our hypotheses are much weaker, in terms of regularity and decay, than previous large-data well-posedness results in the literature. We also derive a continuation criterion for our solutions that is, for the case of very soft potentials, an improvement over the previous state of the art.
@article{AIHPC_2020__37_6_1345_0, author = {Henderson, Christopher and Snelson, Stanley and Tarfulea, Andrei}, title = {Local solutions of the {Landau} equation with rough, slowly decaying initial data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1345--1377}, publisher = {Elsevier}, volume = {37}, number = {6}, year = {2020}, doi = {10.1016/j.anihpc.2020.04.004}, mrnumber = {4168919}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.004/} }
TY - JOUR AU - Henderson, Christopher AU - Snelson, Stanley AU - Tarfulea, Andrei TI - Local solutions of the Landau equation with rough, slowly decaying initial data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 1345 EP - 1377 VL - 37 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.004/ DO - 10.1016/j.anihpc.2020.04.004 LA - en ID - AIHPC_2020__37_6_1345_0 ER -
%0 Journal Article %A Henderson, Christopher %A Snelson, Stanley %A Tarfulea, Andrei %T Local solutions of the Landau equation with rough, slowly decaying initial data %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 1345-1377 %V 37 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.004/ %R 10.1016/j.anihpc.2020.04.004 %G en %F AIHPC_2020__37_6_1345_0
Henderson, Christopher; Snelson, Stanley; Tarfulea, Andrei. Local solutions of the Landau equation with rough, slowly decaying initial data. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 6, pp. 1345-1377. doi : 10.1016/j.anihpc.2020.04.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.004/
[1] Some a priori estimates for the homogeneous Landau equation with soft potentials, Kinet. Relat. Models, Volume 8 (2015) no. 4, pp. 617–650 | MR
[2] Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., Volume 198 (2010) no. 1, pp. 39–123 | DOI | MR | Zbl
[3] Bounded solutions of the Boltzmann equation in the whole space, Kinet. Relat. Models, Volume 4 (2011) no. 1, pp. 17–40 | DOI | MR | Zbl
[4] Local existence with mild regularity for the Boltzmann equation, Kinet. Relat. Models, Volume 6 (2013) no. 4, pp. 1011–1041 | DOI | MR | Zbl
[5] On the Landau approximation in plasma physics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 21 (2004) no. 1, pp. 61–95 | DOI | Numdam | MR | Zbl
[6] The existence of a generalized solution of Landau's equation, Ž. Vyčisl. Mat. Mat. Fiz., Volume 17 (1977) no. 4, pp. 1063–1068 (1096) | MR | Zbl
[7] Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 3, pp. 625–642 | DOI | Numdam | MR
[8] Landau equation for very soft and Coulomb potentials near Maxwellians, Ann. PDE, Volume 3 (Jan 2017) no. 1, pp. 1 | DOI | MR
[9] Cauchy problem and exponential stability for the inhomogeneous Landau equation, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 1, pp. 363–418 | DOI | MR
[10] The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, 1970 | MR | Zbl
[11] Local existence for the Landau equation with hard potentials, 2019 (Preprint) | arXiv | MR
[12] Smoothing effects for classical solutions of the full Landau equation, Arch. Ration. Mech. Anal., Volume 193 (2009) no. 1, pp. 21–55 | DOI | MR | Zbl
[13] Long time dynamics of forced critical SQG, Commun. Math. Phys., Volume 335 (2015) no. 1, pp. 93–141 | DOI | MR
[14] Entropy dissipation estimates for the Landau equation in the Coulomb case and applications, J. Funct. Anal., Volume 269 (2015) no. 5, pp. 1359–1403 | DOI | MR
[15] On the spatially homogeneous Landau equation for hard potentials part I: existence, uniqueness and smoothness, Commun. Partial Differ. Equ., Volume 25 (2000) no. 1–2, pp. 179–259 | MR | Zbl
[16] Global mild solutions of the Landau and non-cutoff Boltzmann equations, 2019 (Preprint) | arXiv | MR
[17] Partial regularity in time for the space homogeneous Landau equation with Coulomb potential, 2019 (Preprint) | arXiv
[18] Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume XIX (2019) no. 1, pp. 253–295 | MR
[19] Estimates for radial solutions of the homogeneous Landau equation with Coulomb potential, Anal. PDE, Volume 9 (2016) no. 8, pp. 1773–1810 | DOI | MR
[20] On weights and the Landau equation, Calc. Var. Partial Differ. Equ., Volume 58 (2018) no. 1, pp. 17 | DOI | MR
[21] The Landau equation in a periodic box, Commun. Math. Phys., Volume 231 (2002) no. 3, pp. 391–434 | MR | Zbl
[22] Well-posedness and asymptotics of grazing collisions limit of Boltzmann equation with Coulomb interaction, SIAM J. Math. Anal., Volume 46 (2014) no. 6, pp. 4104–4165 | MR
[23] smoothing for weak solutions of the inhomogeneous Landau equation, Arch. Ration. Mech. Anal., Volume 236 (2020) no. 1, pp. 113–143 | DOI | MR
[24] Local existence, lower mass bounds, and a new continuation criterion for the Landau equation, J. Differ. Equ., Volume 266 (2019) no. 2–3, pp. 1536–1577 | MR
[25] Decay estimates for large velocities in the Boltzmann equation without cut-off, J. Éc. Polytech., Volume 7 (2020), pp. 143–184 | MR
[26] The Schauder estimate for kinetic integral equations, 2018 (Preprint) | arXiv | MR
[27] Global regularity estimates for the Boltzmann equation without cut-off, 2019 (Preprint) | arXiv | MR
[28] Weak Harnack inequality for the Boltzmann equation without cut-off, J. Eur. Math. Soc., Volume 2 (2020) no. 2, pp. 507–592 | DOI | MR
[29] Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ., Volume 5 (2008) no. 3, pp. 211–240 | DOI | MR | Zbl
[30] Physical Kinetics, Course of Theoretical Physics, vol. 10, Butterworth-Heinemann, 1981
[31] On Boltzmann and Landau equations, Philos. Trans. R. Soc. Lond., Ser. A, Volume 346 (1994) no. 1679, pp. 191–204 | MR | Zbl
[32] Stability of vacuum for the Landau equation with moderately soft potentials, Ann. PDE, Volume 5 (2019) no. 1, pp. 11 | MR
[33] Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials, Anal. Appl. (Singap.), Volume 13 (2015) no. 6, pp. 663–683 | DOI | MR
[34] De Giorgi-Nash-Moser and Hörmander theories: new interplay, Proc. ICM 2018, Vol. III, 2020, pp. 2467–2493 | DOI | MR
[35] Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, Volume 19 (2006) no. 4, pp. 969 | DOI | MR | Zbl
[36] The Moser's iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., Volume 06 (2004) no. 03, pp. 395–417 | DOI | MR | Zbl
[37] A new regularization mechanism for the Boltzmann equation without cut-off, Commun. Math. Phys., Volume 348 (2016) no. 1, pp. 69–100 | DOI | MR
[38] Upper bounds for parabolic equations and the Landau equation, J. Differ. Equ., Volume 262 (2017) no. 3, pp. 3034–3055 | DOI | MR
[39] Gaussian bounds for the inhomogeneous Landau equation with hard potentials, SIAM J. Math. Anal., Volume 52 (2020) no. 2, pp. 2081–2097 | DOI | MR
[40] Almost exponential decay near Maxwellian, Commun. Partial Differ. Equ., Volume 31 (2006) no. 3, pp. 417–429 | DOI | MR | Zbl
[41] Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., Volume 187 (2008) no. 2, pp. 287–339 | DOI | MR | Zbl
[42] On the Cauchy problem for Landau equation: sequential stability, global existence, Adv. Differ. Equ., Volume 1 (1996) no. 5, pp. 793–816 | MR | Zbl
[43] On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., Volume 08 (1998) no. 06, pp. 957–983 | DOI | MR | Zbl
[44] The regularity of weak solutions of ultraparabolic equations, Discrete Contin. Dyn. Syst., Volume 29 (2011) no. 3, pp. 1261–1275 | DOI | MR | Zbl
[45] Global in time estimates for the spatially homogeneous Landau equation with soft potentials, J. Funct. Anal., Volume 266 (2014) no. 5, pp. 3134–3155 | MR | Zbl
Cité par Sources :