Statistical stability of mostly expanding diffeomorphisms
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 6, pp. 1245-1270.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Nous étudions comment les mesures physiques varient avec la dynamique sous-jacente, dans la classe ouverte des difféomorphismes Cr, r>1, fortement partiellement hyperboliques pour lesquelles les exposants de Lyapunov centraux de tout u-état de Gibbs sont positifs. Lorsque transitifs, de tels difféomorphismes possédent une unique mesure physique qui persiste et varie continûment avec la dynamique.

Un des ingrédients principaux de la preuve est un nouveau lemme de type Pliss qui, appliqué dans le contexte adéquat, implique que la fréquence des temps hyperboliques est proche de un. Une autre nouveauté est l'introduction d'une nouvelle caractérisation des cu-états de Gibbs. Chacun de ses deux aspects ayant leur propre intérêt.

Le cas non transitif est aussi traité : dans ce contexte, le nombre de mesures physiques est une fonction semi-continue supérieure du difféomorphisme, et les mesures physiques varient continûment sous des hypothèses naturelles.

We study how physical measures vary with the underlying dynamics in the open class of Cr, r>1, strong partially hyperbolic diffeomorphisms for which the central Lyapunov exponents of every Gibbs u-state is positive. If transitive, such a diffeomorphism has a unique physical measure that persists and varies continuously with the dynamics.

A main ingredient in the proof is a new Pliss-like Lemma which, under the right circumstances, yields frequency of hyperbolic times close to one. Another novelty is the introduction of a new characterization of Gibbs cu-states. Both of these may be of independent interest.

The non-transitive case is also treated: here the number of physical measures varies upper semi-continuously with the diffeomorphism, and physical measures vary continuously whenever possible.

DOI : 10.1016/j.anihpc.2020.04.007
Classification : 37D30, 37C40, 37D25
Mots-clés : Partial hyperbolicity, Lyapunov exponents, SRB measures, Stable ergodicity, Statistical stability
Andersson, Martin 1 ; Vásquez, Carlos H. 2

1 Universidade Federal Fluminense, Departamento de Matemática Aplicada, Rua Professor Marcos Waldemar de Freitas Reis, s/n, 24210-201, Niterói, Brazil
2 Instituto de Matemática, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón, Valparaíso, Chile
@article{AIHPC_2020__37_6_1245_0,
     author = {Andersson, Martin and V\'asquez, Carlos H.},
     title = {Statistical stability of mostly expanding diffeomorphisms},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1245--1270},
     publisher = {Elsevier},
     volume = {37},
     number = {6},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.04.007},
     mrnumber = {4168916},
     zbl = {1477.37041},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.007/}
}
TY  - JOUR
AU  - Andersson, Martin
AU  - Vásquez, Carlos H.
TI  - Statistical stability of mostly expanding diffeomorphisms
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 1245
EP  - 1270
VL  - 37
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.007/
DO  - 10.1016/j.anihpc.2020.04.007
LA  - en
ID  - AIHPC_2020__37_6_1245_0
ER  - 
%0 Journal Article
%A Andersson, Martin
%A Vásquez, Carlos H.
%T Statistical stability of mostly expanding diffeomorphisms
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 1245-1270
%V 37
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.007/
%R 10.1016/j.anihpc.2020.04.007
%G en
%F AIHPC_2020__37_6_1245_0
Andersson, Martin; Vásquez, Carlos H. Statistical stability of mostly expanding diffeomorphisms. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 6, pp. 1245-1270. doi : 10.1016/j.anihpc.2020.04.007. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.04.007/

[1] Abdenur, Flavio; Bonatti, Christian; Crovisier, Sylvain Nonuniform hyperbolicity for C 1 -generic diffeomorphisms, Isr. J. Math., Volume 183 (Jun 2011) no. 1, pp. 1 | MR | Zbl

[2] Alves, José F. Strong statistical stability of non-uniformly expanding maps, Nonlinearity, Volume 17 (2004) no. 4, pp. 1193–1215 | MR | Zbl

[3] Alves, José F.; Bonatti, Christian; Viana, Marcelo SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., Volume 140 (2000) no. 2, pp. 351–398 | MR | Zbl

[4] Alves, José F.; Carvalho, Maria; Freitas, Jorge Milhazes Statistical stability and continuity of SRB entropy for systems with Gibbs-Markov structures, Commun. Math. Phys., Volume 296 (2010) no. 3, pp. 739–767 | MR | Zbl

[5] Alves, José F.; Viana, Marcelo Statistical stability for robust classes of maps with non-uniform expansion, Ergod. Theory Dyn. Syst., Volume 22 (2002) no. 1, pp. 1–32 | MR | Zbl

[6] Ferreira Alves, José SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Sci. Éc. Norm. Supér. (4), Volume 33 (2000) no. 1, pp. 1–32 | Numdam | MR | Zbl

[7] Andersson, Martin Robust ergodic properties in partially hyperbolic dynamics, Trans. Am. Math. Soc., Volume 362 (2010) no. 4, pp. 1831–1867 | MR | Zbl

[8] Andersson, Martin; Vásquez, Carlos H. On mostly expanding diffeomorphisms, Ergod. Theory Dyn. Syst., Volume 38 (2018) no. 8, pp. 2838–2859 | MR | Zbl

[9] Avila, Artur; Bochi, Jairo Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Trans. Am. Math. Soc., Volume 364 (2012) no. 6, pp. 2883–2907 | MR | Zbl

[10] Barreira, Luis; Pesin, Yakov Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2007 | DOI | MR | Zbl

[11] Bonatti, Christian; Díaz, Lorenzo J.; Viana, Marcelo Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective, Mathematical Physics, III, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005 | MR | Zbl

[12] Bonatti, Christian; Viana, Marcelo SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Isr. J. Math., Volume 115 (2000), pp. 157–193 | MR | Zbl

[13] Burns, Keith; Dolgopyat, Dmitry; Pesin, Yakov; Pollicott, Mark Stable ergodicity for partially hyperbolic attractors with negative central exponents, J. Mod. Dyn., Volume 2 (2008) no. 1, pp. 63–81 | MR | Zbl

[14] Crovisier, Sylvain; Pujals, Enrique R. Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms, Invent. Math., Volume 201 (2015) no. 2, pp. 385–517 | MR | Zbl

[15] Dolgopyat, Dmitry Limit theorems for partially hyperbolic systems, Trans. Am. Math. Soc., Volume 356 (2004) no. 4, pp. 1637–1689 | MR | Zbl

[16] Dolgopyat, Dmitry On differentiability of SRB states for partially hyperbolic systems, Invent. Math., Volume 155 (2004) no. 2, pp. 389–449 | MR | Zbl

[17] Dolgopyat, Dmitry; Viana, Marcelo; Yang, Jiagang Geometric and measure-theoretical structures of maps with mostly contracting center, Commun. Math. Phys., Volume 341 (2016) no. 3, pp. 991–1014 | MR | Zbl

[18] Hasselblatt, Boris; Pesin, Yakov Partially hyperbolic dynamical systems, Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 1–55 | MR | Zbl

[19] Hirsch, M.W.; Pugh, C.C.; Shub, M. Invariant Manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, Berlin-New York, 1977 | DOI | MR | Zbl

[20] Kan, Ittai Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bull. Am. Math. Soc. (N.S.), Volume 31 (1994) no. 1, pp. 68–74 | MR | Zbl

[21] Mañé, Ricardo Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Results in Mathematics and Related Areas (3), vol. 8, Springer-Verlag, Berlin, 1987 (translated from the Portuguese by Silvio Levy) | DOI | MR | Zbl

[22] Mi, Zeya; Cao, Yongluo; Yang, Dawei A note on partially hyperbolic systems with mostly expanding centers, Proc. Am. Math. Soc., Volume 27 (2017) no. 2, pp. 589–607 | MR | Zbl

[23] Pesin, Ya.B.; Sinaĭ, Ya.G. Gibbs measures for partially hyperbolic attractors, Ergod. Theory Dyn. Syst., Volume 2 (1982) no. 3–4, pp. 417–438 | MR | Zbl

[24] Pliss, V.A. On a conjecture of Smale, Differ. Uravn., Volume 8 (1972), pp. 268–282 | MR | Zbl

[25] Pugh, Charles; Shub, Michael Ergodic attractors, Trans. Am. Math. Soc., Volume 312 (1989) no. 1, pp. 1–54 | MR | Zbl

[26] Shub, Michael; Wilkinson, Amie Pathological foliations and removable zero exponents, Invent. Math., Volume 139 (2000) no. 3, pp. 495–508 | MR | Zbl

[27] Vásquez, Carlos H. Statistical stability for diffeomorphisms with dominated splitting, Ergod. Theory Dyn. Syst., Volume 27 (2007) no. 1, pp. 253–283 | MR | Zbl

[28] Vásquez, Carlos H. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents, J. Mod. Dyn., Volume 3 (2009) no. 2, pp. 233–251 | MR | Zbl

[29] Viana, Marcelo; Yang, Jiagang Physical measures and absolute continuity for one-dimensional center direction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 5, pp. 845–877 | Numdam | MR | Zbl

[30] Jiagang Yang, Entropy along expanding foliations, arXiv e-prints, 2018. | MR

[31] Young, Lai-Sang Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. (2), Volume 147 (1998) no. 3, pp. 585–650 | MR | Zbl

[32] Young, Lai-Sang Recurrence times and rates of mixing, Isr. J. Math., Volume 110 (1999), pp. 153–188 | MR | Zbl

Cité par Sources :