In this paper we prove local in time well-posedness for the incompressible Euler equations in for the initial data in , which corresponds to a critical case of the generalized Campanato spaces . The space is studied extensively in our companion paper [9], and in the critical case we have embeddings , where and are the Besov space and the Lipschitz space respectively. In particular contains non- functions as well as linearly growing functions at spatial infinity. We can also construct a class of simple initial velocity belonging to , for which the solution to the Euler equations blows up in finite time.
Mots-clés : Euler equation, Generalized Campanato space, Local well-posedness
@article{AIHPC_2021__38_2_201_0, author = {Chae, Dongho and Wolf, J\"org}, title = {The {Euler} equations in a critical case of the generalized {Campanato} space}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {201--241}, publisher = {Elsevier}, volume = {38}, number = {2}, year = {2021}, doi = {10.1016/j.anihpc.2020.06.006}, mrnumber = {4211985}, zbl = {1458.35308}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.06.006/} }
TY - JOUR AU - Chae, Dongho AU - Wolf, Jörg TI - The Euler equations in a critical case of the generalized Campanato space JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 201 EP - 241 VL - 38 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.06.006/ DO - 10.1016/j.anihpc.2020.06.006 LA - en ID - AIHPC_2021__38_2_201_0 ER -
%0 Journal Article %A Chae, Dongho %A Wolf, Jörg %T The Euler equations in a critical case of the generalized Campanato space %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 201-241 %V 38 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.06.006/ %R 10.1016/j.anihpc.2020.06.006 %G en %F AIHPC_2021__38_2_201_0
Chae, Dongho; Wolf, Jörg. The Euler equations in a critical case of the generalized Campanato space. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 201-241. doi : 10.1016/j.anihpc.2020.06.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.06.006/
[1] Fourier Analysis and Nonlinear Partial Differential Equations, Springer, 2011 | DOI | MR | Zbl
[2] Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations, Discrete Contin. Dyn. Syst. Ser., Volume 3 (2010) no. 2, pp. 185-197 | MR | Zbl
[3] Remarks on the breakdown of smooth solutions for the 3D Euler equations, Commun. Math. Phys., Volume 94 (1984), pp. 61-66 | DOI | MR | Zbl
[4] -estimates for certain non-regular pseudo-differential operators, Commun. Partial Differ. Equ., Volume 7 (1982), pp. 1023-1033 | DOI | MR | Zbl
[5] Strong illposedness of the incompressible Euler equations in integer spaces, Geom. Funct. Anal., Volume 25 (2015), pp. 1-86 | DOI | MR | Zbl
[6] Strong illposedness of the incompressible Euler equations in borderline Sobolev spaces, Invent. Math., Volume 201 (2015), pp. 97-157 | DOI | MR | Zbl
[7] Proprieti di una famiglia di spazi funzionali, Ann. Sc. Norm. Super. Pisa, Volume 18 (1964), pp. 137-160 | Numdam | MR | Zbl
[8] Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot. Anal., Volume 38 (2004) no. 3–4, pp. 339-358 | MR | Zbl
[9] Transport equation in generalized Campanato spaces, 2019 | arXiv | Zbl
[10] Perfect Incompressible Fluids, Clarendon Press, Oxford, 1998 | DOI | MR | Zbl
[11] Ill-posedness of the basic equations of fluid dynamics in Besov spaces, Proc. Am. Math. Soc., Volume 138 (2010) no. 3, pp. 1059-1067 | DOI | MR | Zbl
[12] On the Euler equations of incompressible fluids, Bull. Am. Math. Soc. N.S., Volume 44 (2007) no. 4, pp. 603-621 | DOI | MR | Zbl
[13] ill-posedness for a class of equations arising in hydrodynamics, Arch. Ration. Mech. Anal., Volume 235 (2020) no. 3, pp. 1979-2025 | DOI | MR | Zbl
[14] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, 1983 | MR | Zbl
[15] Nonstationary flows of viscous and ideal fluids in , J. Funct. Anal., Volume 9 (1972), pp. 296-305 | DOI | MR | Zbl
[16] Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988) no. 7, pp. 891-907 | DOI | MR | Zbl
[17] Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 191-200 | DOI | MR | Zbl
[18] Euler equations and real harmonic analysis, Arch. Ration. Mech. Anal., Volume 204 (2012), pp. 355-386 | DOI | MR | Zbl
[19] Mathematical Topics in Fluid Mechanics, vol. 1, Oxford University Press, New York, 1996 | MR | Zbl
[20] Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[21] Continuity of the solution map of the Euler equations in Hölder spaces and weak norm inflation in Besov spaces, Trans. Am. Math. Soc., Volume 370 (2018) no. 7, pp. 4709-4730 | DOI | MR | Zbl
[22] Existence of solution for the Euler equations in a critical Besov space , Commun. Partial Differ. Equ., Volume 29 (2004), pp. 1149-1166 | DOI | MR | Zbl
[23] Pseudodifferential operators, paradifferential operators, and layer potentials, AMS, Volume 81 (2000) | Zbl
[24] Theory of Function Spaces, Monographs in Mathematics, vol. 84, Birkhäuser, Basel, 1992 | MR | Zbl
[25] Hydrodynamics in Besov spaces, Arch. Ration. Mech. Anal., Volume 145 (1998), pp. 197-214 | DOI | MR | Zbl
[26] Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Éc. Norm. Supér., Volume 32 (1999) no. 6, pp. 769-812 | DOI | Numdam | MR | Zbl
[27] Nonstationary flow of an ideal incompressible liquid, Zh. Vych. Mat., Volume 3 (1963), pp. 1032-1066 | MR | Zbl
Cité par Sources :