On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities
Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 647-687.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider a diffuse interface model describing flow and phase separation of a binary isothermal mixture of (partially) immiscible viscous incompressible Newtonian fluids having different densities. The model is the nonlocal version of the one derived by Abels, Garcke and Grün and consists in a inhomogeneous Navier-Stokes type system coupled with a convective nonlocal Cahn-Hilliard equation. This model was already analyzed in a paper by the same author, for the case of singular potential and non-degenerate mobility. Here, we address the physically more relevant situation of degenerate mobility and we prove existence of global weak solutions satisfying an energy inequality. The proof relies on a regularization technique based on a careful approximation of the singular potential. Existence and regularity of the pressure field is also discussed. Moreover, in two dimensions and for slightly more regular solutions, we establish the validity of the energy identity. We point out that in none of the existing contributions dealing with the original (local) Abels, Garcke Grün model, an energy identity in two dimensions is derived (only existence of weak solutions has been proven so far).

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.08.005
Classification : 35Q30, 37L30, 45K05, 76D03, 76T99
Mots-clés : Incompressible binary fluids, Navier-Stokes equations, Nonlocal Cahn-Hilliard equations, Weak solutions, Regularization
Frigeri, Sergio 1

1 Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via C. Saldini 50, 20133, Milano, Italy
@article{AIHPC_2021__38_3_647_0,
     author = {Frigeri, Sergio},
     title = {On a nonlocal {Cahn-Hilliard/Navier-Stokes} system with degenerate mobility and singular potential for incompressible fluids with different densities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {647--687},
     publisher = {Elsevier},
     volume = {38},
     number = {3},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.08.005},
     mrnumber = {4227048},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.08.005/}
}
TY  - JOUR
AU  - Frigeri, Sergio
TI  - On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 647
EP  - 687
VL  - 38
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.08.005/
DO  - 10.1016/j.anihpc.2020.08.005
LA  - en
ID  - AIHPC_2021__38_3_647_0
ER  - 
%0 Journal Article
%A Frigeri, Sergio
%T On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 647-687
%V 38
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.08.005/
%R 10.1016/j.anihpc.2020.08.005
%G en
%F AIHPC_2021__38_3_647_0
Frigeri, Sergio. On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 647-687. doi : 10.1016/j.anihpc.2020.08.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.08.005/

[1] Abels, H. On a diffusive interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., Volume 194 (2009), pp. 463-506 | DOI | MR | Zbl

[2] Abels, H. Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system, Proceedings of the Conference “Nonlocal and Abstract Parabolic Equations and Their Applications”, vol. 86, Banach Center Publ., Bedlewo, 2009, pp. 9-19 | DOI | MR | Zbl

[3] Abels, H. Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Commun. Math. Phys., Volume 289 (2009), pp. 45-73 | DOI | MR | Zbl

[4] Abels, H. Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow, SIAM J. Math. Anal., Volume 44 (2012), pp. 316-340 | DOI | MR | Zbl

[5] Abels, H.; Depner, D.; Garcke, H. Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., Volume 15 (2013), pp. 453-480 | DOI | MR | Zbl

[6] Abels, H.; Depner, D.; Garcke, H. On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 1175-1190 | DOI | Numdam | MR | Zbl

[7] Abels, H.; Diening, L.; Terasawa, Y. Existence of weak solutions for a diffuse interface model of non-Newtonian two-phase flows, Nonlinear Anal., Real World Appl., Volume 15 (2014), pp. 149-157 | DOI | MR | Zbl

[8] Abels, H.; Garcke, H.; Grün, G. Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., Volume 22 (2011) (40 pages) | MR | Zbl

[9] Abels, H.; Terasawa, Y. Weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities and nonlocal free energies, Math. Methods Appl. Sci. (2020), pp. 1-20 | MR

[10] Anderson, D.M.; McFadden, G.B.; Wheeler, A.A. (Annu. Rev. Fluid Mech.), Volume vol. 30, Annual Reviews, Palo Alto, CA (1998), pp. 139-165 | MR

[11] Bastea, S.; Esposito, R.; Lebowitz, J.L.; Marra, R. Sharp interface motion of a binary fluid mixture, J. Stat. Phys., Volume 124 (2006), pp. 445-483 | MR | Zbl

[12] Bates, P.W.; Han, J. The Neumann boundary problem for a nonlocal Cahn-Hilliard equation, J. Differ. Equ., Volume 212 (2005), pp. 235-277 | DOI | MR | Zbl

[13] Bates, P.W.; Han, J. The Dirichlet boundary problem for a nonlocal Cahn–Hilliard equation, J. Math. Anal. Appl., Volume 311 (2005), pp. 289-312 | DOI | MR | Zbl

[14] Besov, O.V.; Il'in, V.P.; Nikol'skiĭ, S.M. Integral Representations of Functions and Embedding Theorems, Vol. II (Taibleson, M.H., ed.), Scripta Series in Mathematics, V. H. Winston & Sons/Halsted Press [John Wiley & Sons], Washington, D.C./New York-Toronto, Ont.-London, 1979 | MR | Zbl

[15] Bedrossian, J.; Rodríguez, N.; Bertozzi, A. Local and global well-posedness for an aggregation equation and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, Volume 24 (2011), pp. 1683-1714 | DOI | MR | Zbl

[16] Bonart, H.; Kahle, C.; Repke, J.U. Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model, J. Comput. Phys., Volume 399 (2019) | DOI | MR

[17] Boyer, F. Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal., Volume 20 (1999), pp. 175-212 | MR | Zbl

[18] Boyer, F. Nonhomogeneous Cahn-Hilliard fluids, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 18 (2001), pp. 225-259 | DOI | Numdam | MR | Zbl

[19] Boyer, F.; Fabrie, P. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, vol. 183, Springer, New York, 2013 | MR | Zbl

[20] Bosia, S. Analysis of a Cahn-Hilliard-Ladyzhenskaya system with singular potential, J. Math. Anal. Appl., Volume 397 (2013), pp. 307-321 | DOI | MR | Zbl

[21] Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., Volume 28 (1958), pp. 258-267 | DOI

[22] Cao, C.; Gal, C.G. Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity, Volume 25 (2012), pp. 3211-3234 | DOI | MR | Zbl

[23] Colli, P.; Frigeri, S.; Grasselli, M. Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system, J. Math. Anal. Appl., Volume 386 (2012), pp. 428-444 | DOI | MR | Zbl

[24] Chen, C.K.; Fife, P.C. Nonlocal models of phase transitions in solids, Adv. Math. Sci. Appl., Volume 10 (2000), pp. 821-849 | MR | Zbl

[25] Choksi, R. On global minimizers for a variational problem with long-range interaction, Q. Appl. Math., Volume 70 (2012), pp. 517-537 | DOI | MR | Zbl

[26] Colli, P.; Krejčí, P.; Rocca, E.; Sprekels, J. Nonlinear evolution inclusions arising from phase change models, Czechoslov. Math. J., Volume 57 (2007), pp. 1067-1098 | DOI | MR | Zbl

[27] Doi, M. Dynamics of domains and textures (McLeish, T.C., ed.), Theoretical Challenges the Dynamics of Complex Fluids, NATO ASI Ser., vol. 339, Kluwer Academic, Dordrecht, 1997, pp. 293-314

[28] Elliott, C.M. The Cahn-Hilliard model for the kinetics of phase separation (Rodrigues, J.F., ed.), Mathematical Models for Phase Change Problems, International Series of Numerical Mathematics, vol. 88, Birkhäuser Verlag, Basel, 1989, pp. 35-73 | DOI | MR | Zbl

[29] Elliott, C.M.; Garcke, H. On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., Volume 27 (1996), pp. 404-423 | DOI | MR | Zbl

[30] Emmerich, H. The Diffuse Interface Approach in Materials Science, Springer, Berlin Heidelberg, 2003

[31] Evans, L.C. Partial Differential Equations, American Mathematical Society, 1998 | MR | Zbl

[32] Feireisl, E.; Novotný, A. Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl

[33] Frigeri, S. Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities, Math. Models Methods Appl. Sci., Volume 26 (2016), pp. 1955-1993 | DOI | MR

[34] Frigeri, S.; Gal, C.G.; Grasselli, M. On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, J. Nonlinear Sci., Volume 26 (2016), pp. 847-893 | DOI | MR

[35] Frigeri, S.; Gal, C.G.; Grasselli, M.; Sprekels, J. Two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with variable viscosity, degenerate mobility and singular potential, Nonlinearity, Volume 32 (2019), pp. 678-727 | DOI | MR

[36] Frigeri, S.; Grasselli, M. Global and trajectories attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system, J. Dyn. Differ. Equ., Volume 24 (2012), pp. 827-856 | DOI | MR | Zbl

[37] Frigeri, S.; Grasselli, M. Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials, Dyn. Partial Differ. Equ., Volume 9 (2012), pp. 273-304 | DOI | MR | Zbl

[38] Frigeri, S.; Grasselli, M.; Krejčí, P. Strong solutions for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems, J. Differ. Equ., Volume 255 (2013), pp. 2587-2614 | DOI | MR | Zbl

[39] Frigeri, S.; Grasselli, M.; Pražák, D. Nonlocal Cahn-Hilliard-Navier-Stokes systems with shear dependent viscosity, J. Math. Anal. Appl., Volume 459 (2018), pp. 753-777 | DOI | MR

[40] Frigeri, S.; Grasselli, M.; Rocca, E. A diffuse interface model for two-phase incompressible flows with nonlocal interactions and nonconstant mobility, Nonlinearity, Volume 28 (2015), pp. 1257-1293 | DOI | MR

[41] Frigeri, S.; Grasselli, M.; Sprekels, J. Optimal distributed control of two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with degenerate mobility and singular potential, Appl. Math. Optim., Volume 81 (2020), pp. 899-931 | DOI | MR

[42] Frigeri, S.; Rocca, E.; Sprekels, J. Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in 2D, SIAM J. Control Optim., Volume 54 (2016), pp. 221-250 | DOI | MR

[43] Fujiwara, D.; Morimoto, H. An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci., Univ. Tokyo, Sect. I, Volume 24 (1977), pp. 685-700 | MR | Zbl

[44] Fultz, B. Phase Transitions in Materials, Cambridge University Press, Cambridge, United Kingdom, 2014 | DOI

[45] Gajewski, H.; Zacharias, K. On a nonlocal phase separation model, J. Math. Anal. Appl., Volume 286 (2003), pp. 11-31 | DOI | MR | Zbl

[46] Gal, C.G.; Giorgini, A.; Grasselli, M. The nonlocal Cahn-Hilliard equation with singular potential: well-posedness, regularity and strict separation property, J. Differ. Equ., Volume 263 (2017), pp. 5253-5297 | DOI | MR

[47] Gal, C.G.; Grasselli, M. Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010), pp. 401-436 | DOI | Numdam | MR | Zbl

[48] Gal, C.G.; Grasselli, M. Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math., Ser. B, Volume 31 (2010), pp. 655-678 | DOI | MR | Zbl

[49] Gal, C.G.; Grasselli, M. Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system, Physica D, Volume 240 (2011), pp. 629-635 | DOI | MR | Zbl

[50] Gal, C.G.; Grasselli, M.; Miranville, A. Cahn-Hilliard-Navier-Stokes systems with moving contact lines, Calc. Var. Partial Differ. Equ., Volume 55 (2016), p. 50 | DOI | MR

[51] Gal, C.G.; Grasselli, M.; Wu, H. Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Ration. Mech. Anal., Volume 234 (2019), pp. 1-56 | DOI | MR

[52] Gal, C.G.; Grasselli, M. Longtime behavior of nonlocal Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., Ser. A, Volume 34 (2014), pp. 145-179 | DOI | MR | Zbl

[53] Galdi, G.P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Springer Monographs in Mathematics, Springer, New York, 2011 | MR | Zbl

[54] Giacomin, G.; Lebowitz, J.L. Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits, J. Stat. Phys., Volume 87 (1997), pp. 37-61 | DOI | MR | Zbl

[55] Giacomin, G.; Lebowitz, J.L. Phase segregation dynamics in particle systems with long range interactions. II. Phase motion, SIAM J. Appl. Math., Volume 58 (1998), pp. 1707-1729 | DOI | MR | Zbl

[56] Giacomin, G.; Lebowitz, J.L.; Marra, R. Macroscopic evolution of particle systems with short- and long-range interactions, Nonlinearity, Volume 13 (2000), pp. 2143-2162 | DOI | MR | Zbl

[57] Giga, Y.; Miyakawa, T. Solutions in Lr of the Navier-Stokes initial value problem, Arch. Ration. Mech. Anal., Volume 89 (1985), pp. 267-281 | DOI | MR | Zbl

[58] Giorgini, A.; Miranville, A.; Temam, R. Uniqueness and regularity for the Navier–Stokes–Cahn–Hilliard system, SIAM J. Math. Anal., Volume 51 (2019), pp. 2535-2574 | DOI | MR

[59] Grasselli, M.; Pražák, D. Longtime behavior of a diffuse interface model for binary fluid mixtures with shear dependent viscosity, Interfaces Free Bound., Volume 13 (2011), pp. 507-530 | DOI | MR | Zbl

[60] Gurtin, M.E.; Polignone, D.; Viñals, J. Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., Volume 6 (1996), pp. 8-15 | DOI | MR | Zbl

[61] Heida, M.; Málek, J.; Rajagopal, K.R. On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework, Z. Angew. Math. Phys., Volume 63 (2012), pp. 145-169 | DOI | MR | Zbl

[62] Hintermüller, M.; Hinze, M.; Kahle, C. An adaptive finite element Moreau–Yosida-based solver for a coupled Cahn–Hilliard/Navier–Stokes system, J. Comput. Phys., Volume 235 (2013), pp. 810-827 | DOI | MR | Zbl

[63] Hintermüller, M.; Keil, T.; Wegner, D. Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system with nonmatched fluid densities, SIAM J. Control Optim., Volume 55 (2017), pp. 1954-1989 | DOI | MR | Zbl

[64] Hohenberg, P.C.; Halperin, B.I. Theory of dynamical critical phenomena, Rev. Mod. Phys., Volume 49 (1977), pp. 435-479 | DOI

[65] Jasnow, D.; Viñals, J. Coarse-grained description of thermo-capillary flow, Phys. Fluids, Volume 8 (1996), pp. 660-669 | DOI | Zbl

[66] Kim, J.S. Phase-field models for multi-component fluid flows, Commun. Comput. Phys., Volume 12 (2012), pp. 613-661 | DOI | MR

[67] Kim, N.; Consiglieri, L.; Rodrigues, J.F. On non-Newtonian incompressible fluids with phase transitions, Math. Methods Appl. Sci., Volume 29 (2006), pp. 1523-1541 | DOI | MR | Zbl

[68] Krejčí, P.; Rocca, E.; Sprekels, J. A nonlocal phase-field model with nonconstant specific heat, Interfaces Free Bound., Volume 9 (2007), pp. 285-306 | DOI | MR | Zbl

[69] Krejčí, P.; Rocca, E.; Sprekels, J. Non-local temperature dependent phase-field model for non-isothermal phase transitions, J. Lond. Math. Soc., Volume 76 (2007), pp. 197-210 | DOI | MR | Zbl

[70] Lamorgese, A.G.; Molin, D.; Mauri, R. Phase field approach to multiphase flow modeling, Milan J. Math., Volume 79 (2011), pp. 597-642 | DOI | MR | Zbl

[71] Lions, P.-L. Mathematical Topics in Fluid Mechanics, Vol. 1, Incompressible Models, Clarendon Press, Oxford, 1996 | MR | Zbl

[72] Liu, C.; Shen, J. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier spectral method, Physica D, Volume 179 (2003), pp. 211-228 | DOI | MR | Zbl

[73] Londen, S.-O.; Petzeltová, H. Convergence of solutions of a non-local phase-field system, Discrete Contin. Dyn. Syst., Ser. S, Volume 4 (2011), pp. 653-670 | MR | Zbl

[74] Londen, S.-O.; Petzeltová, H. Regularity and separation from potential barriers for a non-local phase-field system, J. Math. Anal. Appl., Volume 379 (2011), pp. 724-735 | DOI | MR | Zbl

[75] Lowengrub, J.; Truskinovsky, L. Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., Volume 454 (1998), pp. 2617-2654 | DOI | MR | Zbl

[76] Miranville, A.; Zelik, S. Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., Volume 27 (2004), pp. 545-582 | DOI | MR | Zbl

[77] Morro, A. Phase-field models of Cahn-Hilliard fluids and extra fluxes, Adv. Theor. Appl. Mech., Volume 3 (2010), pp. 409-424 | Zbl

[78] Rowlinson, J.S. Translation of J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys., Volume 20 (1979), pp. 197-244 | DOI | MR | Zbl

[79] Schimperna, G.; Zelik, S. Existence of solutions and separation from singularities for a class of fourth order degenerate parabolic equations, Trans. Am. Math. Soc., Volume 365 (2013), pp. 3799-3829 | DOI | MR | Zbl

[80] Simon, J. Compact sets in space Lp(0,T;B) , Ann. Mat. Pura Appl., Volume 146 (1986), pp. 65-96 | DOI | MR | Zbl

[81] Starovoitov, V.N. The dynamics of a two-component fluid in the presence of capillary forces, Math. Notes, Volume 62 (1997), pp. 244-254 | DOI | MR | Zbl

[82] Strauss, W.A. On continuity of functions with values in various Banach spaces, Pac. J. Math., Volume 19 (1966), pp. 543-551 | DOI | MR | Zbl

[83] Temam, R. Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Oxford, 1984 | MR | Zbl

[84] Wise, S.M.; Lowengrub, J.S.; Frieboes, H.B.; Cristini, V. Three-dimensional multispecies nonlinear tumor growth I: model and numerical method, J. Theor. Biol., Volume 253 (2008) no. 3, pp. 524-543 | DOI | MR

[85] Zhao, L.; Wu, H.; Huang, H. Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids, Commun. Math. Sci., Volume 7 (2009), pp. 939-962 | DOI | MR | Zbl

[86] Zhou, Y.; Fan, J. The vanishing viscosity limit for a 2D Cahn-Hilliard-Navier-Stokes system with a slip boundary condition, Nonlinear Anal., Real World Appl., Volume 14 (2013), pp. 1130-1134 | DOI | MR | Zbl

Cité par Sources :