Semilinear problems with right-hand sides singular at u = 0  = 0 which change sign
Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 877-909.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The present paper is devoted to the study of the existence of a solution u for a quasilinear second order differential equation with homogeneous Dirichlet conditions, where the right-hand side tends to infinity at u=0. The problem has been considered by several authors since the 70's. Mainly, nonnegative right-hand sides were considered and thus only nonnegative solutions were possible. Here we consider the case where the right-hand side can change sign but is non negative (finite or infinite) at u=0, while no restriction on its growth at u=0 is assumed on its positive part. We show that there exists a nonnegative solution in a sense introduced in the paper; moreover, this solution is stable with respect to the right-hand side and is unique if the right-hand side is nonincreasing in u. We also show that if the right-hand side goes to infinity at zero faster than 1/|u|, then only nonnegative solutions are possible. We finally prove by means of the study of a one-dimensional example that nonnegative solutions and even many solutions which change sign can exist if the growth of the right-hand side is 1/|u|γ with 0<γ<1.

DOI : 10.1016/j.anihpc.2020.09.001
Classification : 35J25
Mots-clés : Singular equations, Monotone operators, Existence, Uniqueness, Positive and nonpositive solutions
Casado-Díaz, Juan 1 ; Murat, François 2

1 a Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain
2 b Laboratoire Jacques-Louis Lions, Sorbonne Université & CNRS, France
@article{AIHPC_2021__38_3_877_0,
     author = {Casado-D{\'\i}az, Juan and Murat, Fran\c{c}ois},
     title = {Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {877--909},
     publisher = {Elsevier},
     volume = {38},
     number = {3},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.09.001},
     mrnumber = {4227055},
     zbl = {1466.35111},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.09.001/}
}
TY  - JOUR
AU  - Casado-Díaz, Juan
AU  - Murat, François
TI  - Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 877
EP  - 909
VL  - 38
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.09.001/
DO  - 10.1016/j.anihpc.2020.09.001
LA  - en
ID  - AIHPC_2021__38_3_877_0
ER  - 
%0 Journal Article
%A Casado-Díaz, Juan
%A Murat, François
%T Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 877-909
%V 38
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.09.001/
%R 10.1016/j.anihpc.2020.09.001
%G en
%F AIHPC_2021__38_3_877_0
Casado-Díaz, Juan; Murat, François. Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 877-909. doi : 10.1016/j.anihpc.2020.09.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.09.001/

[1] Boccardo, L.; Casado-Díaz, J. Some properties of solutions of some semilinear elliptic singular problems and applications to the G -convergence, Asymptot. Anal., Volume 86 (2014), pp. 1-15 | MR | Zbl

[2] Boccardo, L.; Gallouët, T.; Murat, F. Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris, Ser. I, Volume 315 (1992), pp. 1159-1164 | MR | Zbl

[3] Boccardo, L.; Orsina, L. Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differ. Equ., Volume 37 (2010), pp. 363-380 | DOI | MR | Zbl

[4] Casado-Díaz, J.; Murat, F.; Porretta, A. Uniqueness results for pseudomonotone problems with p>2 , C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 487-492 | DOI | MR | Zbl

[5] Chipot, M.; Michaille, G. Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Sc. Norm. Super. Pisa, Volume 16 (1989), pp. 137-166 | Numdam | MR | Zbl

[6] Cioranescu, D.; Murat, F.; Cioranescu, D.; Murat, F. Un terme étrange venu d'ailleurs, I et II (Brezis, H.; Lions, J.-L.; Cherkaev, A.; Kohn, R.V., eds.), Non-linear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. II and Vol. III, Pitman, London, 1982, pp. 98-138 (and 154–178 English translation:, A strange term coming from nowhere Topics in Mathematical Modeling of Composite Materials, 1997, Birkhäuser, Boston, pp. 44-93)

[7] Coclite, M.M.; Palmieri, G. On a singular nonlinear Dirichlet problem, Commun. Partial Differ. Equ., Volume 14 (1989), pp. 1315-1327 | DOI | MR | Zbl

[8] Crandall, M.G.; Rabinowitz, P.H.; Tartar, L. On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equ., Volume 2 (1977), pp. 193-222 | DOI | MR | Zbl

[9] Dávila, J.; Montenegro, M. Positive versus free boundary solutions to a singular elliptic equation, J. Anal. Math., Volume 90 (2003), pp. 303-335 | DOI | MR | Zbl

[10] Diaz, J.I.; Morel, J.-M.; Oswald, L. An elliptic equation with singular nonlinearity, Commun. Partial Differ. Equ., Volume 12 (1987), pp. 1333-1344 | DOI | MR | Zbl

[11] A. Ferone, A. Mercaldo, S. Segura de León, A singular elliptic equation and a related functional, submitted. | MR

[12] Giachetti, D.; Martínez-Aparicio, P.J.; Murat, F. Advances in the study of singular semilinear elliptic problems (Ortegón Gallego, F.; Redondo Neble, M.V.; Rodríguez-Galván, J.R., eds.), Trends in Differential Equations and Applications, SEMA SIMAI Springer Ser., vol. 8, 2016, pp. 221-241 | DOI | MR | Zbl

[13] Giachetti, D.; Martínez-Aparicio, P.J.; Murat, F. A semilinear elliptic equation with a mild singularity at u=0 : existence and homogenization, J. Math. Pures Appl., Volume 107 (2017), pp. 41-77 | DOI | MR | Zbl

[14] Giachetti, D.; Martínez-Aparicio, P.J.; Murat, F. Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at u=0 , Ann. Sc. Norm. Super. Pisa, Volume 18 (2018), pp. 1395-1442 | MR | Zbl

[15] Giachetti, D.; Martínez-Aparicio, P.J.; Murat, F. Homogenization of a Dirichlet semilinear elliptic problem with a strong singularity at u=0 in a domain with many small holes, J. Funct. Anal., Volume 274 (2018), pp. 1747-1789 | DOI | MR | Zbl

[16] Giachetti, D.; Martínez-Aparicio, P.J.; Murat, F. On the definition of the solution to a semilinear elliptic problem with a strong singularity at u=0 , Nonlinear Anal., Theory Methods Appl., Volume 177 (2018), pp. 491-523 | DOI | MR | Zbl

[17] Leray, J.; Lions, J.-L. Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. Fr., Volume 93 (1965), pp. 97-107 | DOI | Numdam | MR | Zbl

[18] Lions, J.-L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969 | MR | Zbl

[19] Stuart, C.A. Existence and approximation of solutions of non-linear elliptic equations, Math. Z., Volume 147 (1976), pp. 53-63 | DOI | MR | Zbl

Cité par Sources :