The third order Benjamin-Ono equation on the torus: Well-posedness, traveling waves and stability
Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 815-840.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider the third order Benjamin-Ono equation on the torus

tu=x(xxu32uHxu32H(uxu)+u3).
We prove that for any tR, the flow map continuously extends to Hr,0s(T) if s0, but does not admit a continuous extension to Hr,0s(T) if 0<s<12. Moreover, we show that the extension is weakly sequentially continuous in Hr,0s(T) if s>0, but is not weakly sequentially continuous in Lr,02(T). We then classify the traveling wave solutions for the third order Benjamin-Ono equation in Lr,02(T) and study their orbital stability.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.09.004
Classification : 37K10, 35Q53
Mots-clés : Benjamin-Ono equation, Benjamin-Ono hierarchy, Birkhoff coordinates, Well-posedness, Traveling waves, Orbital stability
Gassot, Louise 1, 2

1 a Département de Mathématiques et Applications, École Normale Supérieure, CNRS, PSL University, 75005 Paris, France
2 b Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d'Orsay, 91405 Orsay, France
@article{AIHPC_2021__38_3_815_0,
     author = {Gassot, Louise},
     title = {The third order {Benjamin-Ono} equation on the torus: {Well-posedness,} traveling waves and stability},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {815--840},
     publisher = {Elsevier},
     volume = {38},
     number = {3},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.09.004},
     mrnumber = {4227053},
     zbl = {1467.37061},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.09.004/}
}
TY  - JOUR
AU  - Gassot, Louise
TI  - The third order Benjamin-Ono equation on the torus: Well-posedness, traveling waves and stability
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 815
EP  - 840
VL  - 38
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.09.004/
DO  - 10.1016/j.anihpc.2020.09.004
LA  - en
ID  - AIHPC_2021__38_3_815_0
ER  - 
%0 Journal Article
%A Gassot, Louise
%T The third order Benjamin-Ono equation on the torus: Well-posedness, traveling waves and stability
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 815-840
%V 38
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.09.004/
%R 10.1016/j.anihpc.2020.09.004
%G en
%F AIHPC_2021__38_3_815_0
Gassot, Louise. The third order Benjamin-Ono equation on the torus: Well-posedness, traveling waves and stability. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 815-840. doi : 10.1016/j.anihpc.2020.09.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.09.004/

[1] Amick, C.J.; Toland, J.F. Uniqueness and related analytic properties for the Benjamin-Ono equation—a nonlinear Neumann problem in the plane, Acta Math., Volume 167 (1991) no. 1, pp. 107-126 | DOI | MR | Zbl

[2] Benjamin, T.B. Internal waves of permanent form in fluids of great depth, J. Fluid Mech., Volume 29 (1967) no. 3, pp. 559-592 | DOI | Zbl

[3] Bock, T.; Kruskal, M. A two-parameter Miura transformation of the Benjamin-Ono equation, Phys. Lett. A, Volume 74 (1979) no. 3–4, pp. 173-176 | DOI | MR

[4] Feng, X.; Han, X. On the Cauchy problem for the third order Benjamin-Ono equation, J. Lond. Math. Soc., Volume 53 (1996) no. 3, pp. 512-528 | DOI | MR | Zbl

[5] Gérard, P.; Kappeler, T. On the integrability of the Benjamin-Ono equation on the torus, Commun. Pure Appl. Math. (2020) | MR

[6] Gérard, P.; Kappeler, T.; Topalov, P. Sharp well-posedness results of the Benjamin-Ono equation in Hs(T,R) and qualitative properties of its solution, 2020 (arXiv preprint) | arXiv | MR | Zbl

[7] Linares, F.; Pilod, D.; Ponce, G. Well-posedness for a higher-order Benjamin–Ono equation, J. Differ. Equ., Volume 250 (2011) no. 1, pp. 450-475 | DOI | MR | Zbl

[8] Matsuno, Y. Bilinear Transformation Method, Mathematics in Science and Engineering, Elsevier, Burlington, MA, 1984 | MR | Zbl

[9] Molinet, L.; Pilod, D. Global well-posedness and limit behavior for a higher-order Benjamin-Ono equation, Commun. Partial Differ. Equ., Volume 37 (2012) no. 11, pp. 2050-2080 | DOI | MR | Zbl

[10] Nakamura, A. Bäcklund transform and conservation laws of the Benjamin-Ono equation, J. Phys. Soc. Jpn., Volume 47 (1979) no. 4, pp. 1335-1340 | DOI | MR | Zbl

[11] Ono, H. Algebraic solitary waves in stratified fluids, J. Phys. Soc. Jpn., Volume 39 (1975) no. 4, pp. 1082-1091 | DOI | MR | Zbl

[12] Pava, J.A.; Hakkaev, S. Ill-posedness for periodic nonlinear dispersive equations, Electron. J. Differ. Equ., Volume 2010 (2010) no. 119, pp. 1-19 | MR | Zbl

[13] Pava, J.A.; Natali, F.M. Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions, SIAM J. Math. Anal., Volume 40 (2008) no. 3, pp. 1123-1151 | DOI | MR | Zbl

[14] Saut, J.-C. Benjamin-Ono and intermediate long wave equations: Modeling, IST and PDE, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Springer, 2019, pp. 95-160 | DOI | MR | Zbl

[15] Tanaka, T. Local well-posedness for fourth order Benjamin-Ono type equations, 2019 (arXiv preprint) | arXiv | MR

[16] Tanaka, T. Local well-posedness for third order Benjamin-Ono type equations on the torus, Adv. Differ. Equ., Volume 24 (2019) no. 9/10, pp. 555-580 | MR | Zbl

[17] Tzvetkov, N.; Visciglia, N. Invariant measures and long-time behavior for the Benjamin–Ono equation, Int. Math. Res. Not., Volume 2014 ( 05 2013 ) no. 17, pp. 4679-4714 | DOI | MR | Zbl

Cité par Sources :