We use entropy theory as a new tool to study sectional hyperbolic flows in any dimension. We show that for flows, every sectional hyperbolic set Λ is entropy expansive, and the topological entropy varies continuously with the flow. Furthermore, if Λ is Lyapunov stable, then it has positive entropy; in addition, if Λ is a chain recurrent class, then it contains a periodic orbit. As a corollary, we prove that for generic flows, every Lorenz-like class is an attractor.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.10.001
@article{AIHPC_2021__38_4_1001_0, author = {Jos\'e Pacifico, Maria and Yang, Fan and Yang, Jiagang}, title = {Entropy theory for sectional hyperbolic flows}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1001--1030}, publisher = {Elsevier}, volume = {38}, number = {4}, year = {2021}, doi = {10.1016/j.anihpc.2020.10.001}, mrnumber = {4266233}, zbl = {1478.37031}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.10.001/} }
TY - JOUR AU - José Pacifico, Maria AU - Yang, Fan AU - Yang, Jiagang TI - Entropy theory for sectional hyperbolic flows JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1001 EP - 1030 VL - 38 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.10.001/ DO - 10.1016/j.anihpc.2020.10.001 LA - en ID - AIHPC_2021__38_4_1001_0 ER -
%0 Journal Article %A José Pacifico, Maria %A Yang, Fan %A Yang, Jiagang %T Entropy theory for sectional hyperbolic flows %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1001-1030 %V 38 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.10.001/ %R 10.1016/j.anihpc.2020.10.001 %G en %F AIHPC_2021__38_4_1001_0
José Pacifico, Maria; Yang, Fan; Yang, Jiagang. Entropy theory for sectional hyperbolic flows. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1001-1030. doi : 10.1016/j.anihpc.2020.10.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.10.001/
[1] On the appearance and structure of the Lorenz attractor, Dokl. Acad. Sci. USSR, Volume 234 (1977), pp. 336-339 | MR | Zbl
[2] Three-Dimensional Flows, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge, Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 53, Springer, Heidelberg, 2010 (With a foreword by Marcelo Viana) | MR | Zbl
[3] Singular-hyperbolic attractors are chaotic, Trans. Am. Math. Soc., Volume 361 (2009), pp. 2431-2485 | DOI | MR | Zbl
[4] Recent progress on sectional-hyperbolic systems, Dyn. Syst., Volume 30 (2015) no. 4, pp. 369-382 | DOI | MR | Zbl
[5] Recurrence et généricité, Invent. Math., Volume 158 (2004), pp. 33-104 | DOI | MR | Zbl
[6] Star flows and multisingular hyperbolicity | arXiv | DOI | Zbl
[7] Dynamics beyond uniform hyperbolicity, Mathematical Physics, III, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005 | MR | Zbl
[8] Entropy expansive maps, Trans. Am. Math. Soc., Volume 164 (1972), pp. 323-331 | DOI | MR | Zbl
[9] On the ergodicity of partially hyperbolic systems, Ann. Math., Volume 171 (2010), pp. 451-489 | DOI | MR | Zbl
[10] Symbolic extensions and smooth dynamical systems, Invent. Math., Volume 160 (2005), pp. 453-499 | DOI | MR | Zbl
[11] A generalized shadowing lemma, Discrete Contin. Dyn. Syst., Volume 8 (2002), pp. 627-632 | DOI | MR | Zbl
[12] Morse-Smale systems and horseshoes for three dimensional singular flows, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018), pp. 39-112 | DOI | MR | Zbl
[13] Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., Volume 164 (2006), pp. 279-315 | DOI | MR | Zbl
[14]
, Springer Verlag (1976), pp. 368-381[15] Structural stability of Lorenz attractors, Publ. Math. IHES, Volume 50 (1979), pp. 59-72 | DOI | Numdam | MR | Zbl
[16] Lyapunov exponents, entropy and periodic points of diffeomorphisms, Publ. Math. IHES, Volume 51 (1980), pp. 137-173 | DOI | Numdam | MR | Zbl
[17] Robustly transitive singular sets via approach of extended linear Poincaré flow, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 239-269 | DOI | MR | Zbl
[18] Measures of intermediate entropies for star vector fields | arXiv | Zbl
[19] The entropy conjecture for diffeomorphisms away from tangencies, J. Eur. Math. Soc., Volume 15 (2013), pp. 2043-2060 | DOI | MR | Zbl
[20] On -contractible orbits of vector fields, Syst. Sci. Math. Sci., Volume 2 (1989), pp. 193-227 | MR | Zbl
[21] The Qualitative Theory of Differential Dynamical Systems, Science Press, 1996 | MR | Zbl
[22] Deterministic nonperiodic flow, J. Atmos. Sci., Volume 20 (1963), pp. 130-141 | DOI | MR | Zbl
[23] Uniform hyperbolic approximations of measures with non-zero Lyapunov exponents, Proc. Am. Math. Soc., Volume 141 (2013) no. 9, pp. 3157-3169 | DOI | MR | Zbl
[24] Sectional-hyperbolic systems, Ergod. Theory Dyn. Syst., Volume 28 (2008), pp. 1587-1597 | DOI | MR | Zbl
[25] Singular hyperbolic systems, Proc. Am. Math. Soc., Volume 127 (1999), pp. 3393-3401 | DOI | MR | Zbl
[26] Robust transitive singular sets for 3−flows are partially hyperbolic attractors or repellers, Ann. Math., Volume 160 (2004), pp. 375-432 | DOI | MR | Zbl
[27] Strong stable manifolds for sectional-hyperbolic sets, Discrete Contin. Dyn. Syst., Volume 17 (2007) no. 3, pp. 553-560 | DOI | MR | Zbl
[28] Continuity properties of entropy, Ann. Math., Volume 129 (1990), pp. 215-235 | DOI | MR | Zbl
[29] On the singular hyperbolicity of star flows, J. Mod. Dyn., Volume 8 (2014), pp. 191-219 | DOI | MR | Zbl
[30] The Lorenz attractor exists, C. R. Acad. Sci. Paris, Ser. I Math., Volume 328 (1999), pp. 1197-1202 | DOI | MR | Zbl
[31] A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., Volume 2 (2002), pp. 53-117 | DOI | MR | Zbl
Cité par Sources :
M.J.P. and J.Y. are partially supported by Grant Produtividade em Pesquisa ( CNPq ), Grant Cientista do Nosso Estado ( FAPERJ ), PROEX-CAPES . F.Y. would like to thank the hospitality of Southern University of Science and Technology of China (SUSTC), where part of this work is done.