Homogenization of a stochastically forced Hamilton-Jacobi equation
Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1217-1253.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study the homogenization of a Hamilton-Jacobi equation forced by rapidly oscillating noise that is colored in space and white in time. It is shown that the homogenized equation is deterministic, and, in general, the noise has an enhancement effect, for which we provide a quantitative estimate. As an application, we perform a noise sensitivity analysis for Hamilton-Jacobi equations forced by a noise term with small amplitude, and identify the scaling at which the macroscopic enhancement effect is felt. The results depend on new, probabilistic estimates for the large scale Hölder regularity of the solutions, which are of independent interest.

DOI : 10.1016/j.anihpc.2020.11.001
Classification : 60H15, 35B27
Mots-clés : Stochastic homogenization, Stochastic Hamilton-Jacobi equation, Stochastic enhancement, Eikonal equation
Seeger, Benjamin 1

1 Université Paris-Dauphine & Collège de France, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France
@article{AIHPC_2021__38_4_1217_0,
     author = {Seeger, Benjamin},
     title = {Homogenization of a stochastically forced {Hamilton-Jacobi} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1217--1253},
     publisher = {Elsevier},
     volume = {38},
     number = {4},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.001},
     mrnumber = {4266240},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.001/}
}
TY  - JOUR
AU  - Seeger, Benjamin
TI  - Homogenization of a stochastically forced Hamilton-Jacobi equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1217
EP  - 1253
VL  - 38
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.001/
DO  - 10.1016/j.anihpc.2020.11.001
LA  - en
ID  - AIHPC_2021__38_4_1217_0
ER  - 
%0 Journal Article
%A Seeger, Benjamin
%T Homogenization of a stochastically forced Hamilton-Jacobi equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1217-1253
%V 38
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.001/
%R 10.1016/j.anihpc.2020.11.001
%G en
%F AIHPC_2021__38_4_1217_0
Seeger, Benjamin. Homogenization of a stochastically forced Hamilton-Jacobi equation. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1217-1253. doi : 10.1016/j.anihpc.2020.11.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.001/

[1] Akcoglu, M.A.; Krengel, U. Ergodic theorems for superadditive processes, J. Reine Angew. Math., Volume 323 (1981), pp. 53-67 | MR | Zbl

[2] Armstrong, S.; Cardaliaguet, P. Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions, J. Eur. Math. Soc., Volume 20 (2018) no. 4, pp. 797-864 | DOI | MR

[3] Armstrong, S.N.; Cardaliaguet, P. Quantitative stochastic homogenization of viscous Hamilton-Jacobi equations, Commun. Partial Differ. Equ., Volume 40 (2015) no. 3, pp. 540-600 | DOI | MR

[4] Armstrong, S.N.; Cardaliaguet, P.; Souganidis, P.E. Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations, J. Am. Math. Soc., Volume 27 (2014) no. 2, pp. 479-540 | DOI | MR | Zbl

[5] Armstrong, S.N.; Souganidis, P.E. Stochastic homogenization of Hamilton-Jacobi and degenerate Bellman equations in unbounded environments, J. Math. Pures Appl. (9), Volume 97 (2012) no. 5, pp. 460-504 | DOI | MR | Zbl

[6] Armstrong, S.N.; Souganidis, P.E. Stochastic homogenization of level-set convex Hamilton-Jacobi equations, Int. Math. Res. Not., Volume 15 (2013), pp. 3420-3449 | DOI | MR

[7] Armstrong, S.N.; Tran, H.V. Stochastic homogenization of viscous Hamilton-Jacobi equations and applications, Anal. PDE, Volume 7 (2014) no. 8, pp. 1969-2007 | DOI | MR

[8] Armstrong, S.N.; Tran, H.V.; Yu, Y. Stochastic homogenization of a nonconvex Hamilton-Jacobi equation, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 2, pp. 1507-1524 | DOI | MR

[9] Armstrong, S.N.; Tran, H.V.; Yu, Y. Stochastic homogenization of nonconvex Hamilton-Jacobi equations in one space dimension, J. Differ. Equ., Volume 261 (2016) no. 5, pp. 2702-2737 | DOI | MR

[10] Bakhtin, Y. The Burgers equation with Poisson random forcing, Ann. Probab., Volume 41 (2013) no. 4, pp. 2961-2989 | DOI | MR | Zbl

[11] Bakhtin, Y. Ergodic theory of the Burgers equation, Probability and Statistical Physics in St. Petersburg, Proc. Sympos. Pure Math., vol. 91, Amer. Math. Soc., Providence, RI, 2016, pp. 1-49 | MR

[12] Bakhtin, Y. Inviscid Burgers equation with random kick forcing in noncompact setting, Electron. J. Probab., Volume 21 (2016) | DOI | MR

[13] Bakhtin, Y.; Cator, E.; Khanin, K. Space-time stationary solutions for the Burgers equation, J. Am. Math. Soc., Volume 27 (2014) no. 1, pp. 193-238 | DOI | MR | Zbl

[14] Bakhtin, Y.; Khanin, K. On global solutions of the random Hamilton-Jacobi equations and the KPZ problem, Nonlinearity, Volume 31 (2018) no. 4, p. R93-R121 | DOI | MR

[15] Becker, M.E. Multiparameter groups of measure-preserving transformations: a simple proof of Wiener's ergodic theorem, Ann. Probab., Volume 9 (1981) no. 3, pp. 504-509 | DOI | MR | Zbl

[16] Boritchev, A.; Khanin, K. On the hyperbolicity of minimizers for 1D random Lagrangian systems, Nonlinearity, Volume 26 (2013) no. 1, pp. 65-80 | DOI | MR | Zbl

[17] Cannarsa, P.; Cardaliaguet, P. Regularity results for eikonal-type equations with nonsmooth coefficients, NoDEA Nonlinear Differ. Equ. Appl., Volume 19 (2012) no. 6, pp. 751-769 | DOI | MR | Zbl

[18] Cardaliaguet, P. A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable, ESAIM Control Optim. Calc. Var., Volume 15 (2009) no. 2, pp. 367-376 | DOI | Numdam | MR | Zbl

[19] Cardaliaguet, P.; Nolen, J.; Souganidis, P.E. Homogenization and enhancement for the G -equation, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 2, pp. 527-561 | DOI | MR | Zbl

[20] Cardaliaguet, P.; Silvestre, L. Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side, Commun. Partial Differ. Equ., Volume 37 (2012) no. 9, pp. 1668-1688 | DOI | MR | Zbl

[21] Cardaliaguet, P.; Souganidis, P.E. Homogenization and enhancement of the G -equation in random environments, Commun. Pure Appl. Math., Volume 66 (2013) no. 10, pp. 1582-1628 | DOI | MR | Zbl

[22] Cardaliaguet, P.; Souganidis, P.E. On the existence of correctors for the stochastic homogenization of viscous Hamilton-Jacobi equations, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 7, pp. 786-794 | DOI | MR

[23] Ciomaga, A.; Souganidis, P.E.; Tran, H.V. Stochastic homogenization of interfaces moving with changing sign velocity, J. Differ. Equ., Volume 258 (2015) no. 4, pp. 1025-1057 | DOI | MR | Zbl

[24] Crandall, M.G.; Lions, P.-L. Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., Volume 277 (1983) no. 1, pp. 1-42 | DOI | MR | Zbl

[25] Davini, A.; Kosygina, E. Homogenization of viscous and non-viscous HJ equations: a remark and an application, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4 | DOI | MR

[26] Davini, A.; Siconolfi, A. Exact and approximate correctors for stochastic Hamiltonians: the 1-dimensional case, Math. Ann., Volume 345 (2009) no. 4, pp. 749-782 | DOI | MR | Zbl

[27] Dunlap, A.; Gu, Y.; Ryzhik, L.; Zeitouni, O. The random heat equation in dimensions three and higher: the homogenization viewpoint (preprint) | arXiv | DOI | MR

[28] E, W.; Khanin, K.; Mazel, A.; Sinai, Y. Invariant measures for Burgers equation with stochastic forcing, Ann. Math. (2), Volume 151 (2000) no. 3, pp. 877-960 | DOI | MR | Zbl

[29] Feldman, W.M.; Fermanian, J.-B.; Ziliotto, B. An example of failure of stochastic homogenization for viscous Hamilton-Jacobi equations without convexity | arXiv | DOI

[30] Feldman, W.M.; Souganidis, P.E. Homogenization and non-homogenization of certain non-convex Hamilton-Jacobi equations, J. Math. Pures Appl. (9), Volume 108 (2017) no. 5, pp. 751-782 | DOI | MR

[31] Gao, H. Random homogenization of coercive Hamilton-Jacobi equations in 1d, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 2 | MR

[32] Gu, Y.; Bal, G. Homogenization of parabolic equations with large time-dependent random potential, Stoch. Process. Appl., Volume 125 (2015) no. 1, pp. 91-115 | DOI | MR | Zbl

[33] Gu, Y.; Ryzhik, L.; Zeitouni, O. The Edwards-Wilkinson limit of the random heat equation in dimensions three and higher, Commun. Math. Phys., Volume 363 (2018) no. 2, pp. 351-388 | DOI | MR

[34] Gubinelli, M.; Imkeller, P.; Perkowski, N. Paracontrolled distributions and singular PDEs, Forum Math. Pi, Volume 3 (2015) | DOI | MR

[35] Hairer, M. Solving the KPZ equation, Ann. Math. (2), Volume 178 (2013) no. 2, pp. 559-664 | DOI | MR | Zbl

[36] Hairer, M. A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269-504 | DOI | MR | Zbl

[37] Hajej, A. Stochastic homogenization of a front propagation problem with unbounded velocity, J. Differ. Equ., Volume 262 (2017) no. 7, pp. 3805-3836 | DOI | MR

[38] Jing, W.; Souganidis, P.E.; Tran, H.V. Stochastic homogenization of viscous superquadratic Hamilton-Jacobi equations in dynamic random environment, Res. Math. Sci., Volume 4 (2017) | DOI | MR

[39] Jing, W.; Souganidis, P.E.; Tran, H.V. Large time average of reachable sets and applications to homogenization of interfaces moving with oscillatory spatio-temporal velocity, Discrete Contin. Dyn. Syst., Ser. S, Volume 11 (2018) no. 5, pp. 915-939 | MR

[40] Khanin, K.; Zhang, K. Hyperbolicity of minimizers and regularity of viscosity solutions for a random Hamilton-Jacobi equation, Commun. Math. Phys., Volume 355 (2017) no. 2, pp. 803-837 | DOI | MR

[41] Kosygina, E.; Rezakhanlou, F.; Varadhan, S.R.S. Stochastic homogenization of Hamilton-Jacobi-Bellman equations, Commun. Pure Appl. Math., Volume 59 (2006) no. 10, pp. 1489-1521 | DOI | MR | Zbl

[42] Kosygina, E.; Varadhan, S.R.S. Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium, Commun. Pure Appl. Math., Volume 61 (2008) no. 6, pp. 816-847 | DOI | MR | Zbl

[43] Lions, P.-L. Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982 | MR | Zbl

[44] Lions, P.-L.; Souganidis, P.E. Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris, Sér. I Math., Volume 326 (1998) no. 9, pp. 1085-1092 | DOI | MR | Zbl

[45] Lions, P.-L.; Souganidis, P.E. Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris, Sér. I Math., Volume 327 (1998) no. 8, pp. 735-741 | DOI | MR | Zbl

[46] Lions, P.-L.; Souganidis, P.E. Fully nonlinear stochastic pde with semilinear stochastic dependence, C. R. Acad. Sci. Paris, Sér. I Math., Volume 331 (2000) no. 8, pp. 617-624 | DOI | MR | Zbl

[47] Lions, P.-L.; Souganidis, P.E. Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris, Sér. I Math., Volume 331 (2000) no. 10, pp. 783-790 | DOI | MR | Zbl

[48] Lions, P.-L.; Souganidis, P.E. Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting, Commun. Pure Appl. Math., Volume 56 (2003) no. 10, pp. 1501-1524 | DOI | MR | Zbl

[49] Lions, P.-L.; Souganidis, P.E. Homogenization of “viscous” Hamilton-Jacobi equations in stationary ergodic media, Commun. Partial Differ. Equ., Volume 30 (2005) no. 1–3, pp. 335-375 | DOI | MR | Zbl

[50] Lions, P.-L.; Souganidis, P.E. Stochastic homogenization of Hamilton-Jacobi and “viscous”-Hamilton-Jacobi equations with convex nonlinearities—revisited, Commun. Math. Sci., Volume 8 (2010) no. 2, pp. 627-637 | DOI | MR | Zbl

[51] Mukherjee, C.; Shamov, A.; Zeitouni, O. Weak and strong disorder for the stochastic heat equation and continuous directed polymers in d3 , Electron. Commun. Probab., Volume 21 (2016) | DOI | MR | Zbl

[52] Nolen, J.; Novikov, A. Homogenization of the G -equation with incompressible random drift in two dimensions, Commun. Math. Sci., Volume 9 (2011) no. 2, pp. 561-582 | DOI | MR | Zbl

[53] Rezakhanlou, F.; Tarver, J.E. Homogenization for stochastic Hamilton-Jacobi equations, Arch. Ration. Mech. Anal., Volume 151 (2000) no. 4, pp. 277-309 | DOI | MR | Zbl

[54] Schwab, R.W. Stochastic homogenization of Hamilton-Jacobi equations in stationary ergodic spatio-temporal media, Indiana Univ. Math. J., Volume 58 (2009) no. 2, pp. 537-581 | DOI | MR | Zbl

[55] Seeger, B. Homogenization of pathwise Hamilton-Jacobi equations, J. Math. Pures Appl. (9), Volume 110 (2018), pp. 1-31 | DOI | MR | Zbl

[56] Seeger, B. Scaling limits and homogenization of mixing Hamilton-Jacobi equations, Commun. Partial Differ. Equ. (2020) (in press) | DOI | MR | Zbl

[57] Souganidis, P.E. Stochastic homogenization of Hamilton-Jacobi equations and some applications, Asymptot. Anal., Volume 20 (1999) no. 1, pp. 1-11 | MR | Zbl

[58] Souganidis, P.E. Pathwise solutions for fully nonlinear first- and second-order partial differential equations with multiplicative rough time dependence, Singular Random Dynamics, Lecture Notes in Math., vol. 2253, Springer, Cham, 2019, pp. 75-220 | DOI | MR | Zbl

[59] Stroock, D.W.; Varadhan, S.R.S. Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 233, Springer-Verlag, Berlin-New York, 1979 | MR | Zbl

[60] Ziliotto, B. Stochastic homogenization of nonconvex Hamilton-Jacobi equations: a counterexample, Commun. Pure Appl. Math., Volume 70 (2017) no. 9, pp. 1798-1809 | DOI | MR | Zbl

Cité par Sources :

Partially supported by the National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship under Grant Number DMS-1902658.