Edge-localized states on quantum graphs in the limit of large mass
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1295-1335.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We construct and quantify asymptotically in the limit of large mass a variety of edge-localized stationary states of the focusing nonlinear Schrödinger equation on a quantum graph. The method is applicable to general bounded and unbounded graphs. The solutions are constructed by matching a localized large amplitude elliptic function on a single edge with an exponentially smaller remainder on the rest of the graph. This is done by studying the intersections of Dirichlet-to-Neumann manifolds (nonlinear analogues of Dirichlet-to-Neumann maps) corresponding to the two parts of the graph. For the quantum graph with a given set of pendant, looping, and internal edges, we find the edge on which the state of smallest energy at fixed mass is localized. Numerical studies of several examples are used to illustrate the analytical results.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.003
Mots-clés : Standing waves on metric graphs, Existence of energy minimizers, Nonlinear Schrödinger equation, Large-mass asymptotic limit
Berkolaiko, Gregory 1 ; Marzuola, Jeremy L. 2 ; Pelinovsky, Dmitry E. 3

1 a Department of Mathematics, Texas A & M University, College Station, TX 77843-3368, USA
2 b Department of Mathematics, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA
3 c Department of Mathematics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
@article{AIHPC_2021__38_5_1295_0,
     author = {Berkolaiko, Gregory and Marzuola, Jeremy L. and Pelinovsky, Dmitry E.},
     title = {Edge-localized states on quantum graphs in the limit of large mass},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1295--1335},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.003},
     mrnumber = {4300924},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.003/}
}
TY  - JOUR
AU  - Berkolaiko, Gregory
AU  - Marzuola, Jeremy L.
AU  - Pelinovsky, Dmitry E.
TI  - Edge-localized states on quantum graphs in the limit of large mass
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1295
EP  - 1335
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.003/
DO  - 10.1016/j.anihpc.2020.11.003
LA  - en
ID  - AIHPC_2021__38_5_1295_0
ER  - 
%0 Journal Article
%A Berkolaiko, Gregory
%A Marzuola, Jeremy L.
%A Pelinovsky, Dmitry E.
%T Edge-localized states on quantum graphs in the limit of large mass
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1295-1335
%V 38
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.003/
%R 10.1016/j.anihpc.2020.11.003
%G en
%F AIHPC_2021__38_5_1295_0
Berkolaiko, Gregory; Marzuola, Jeremy L.; Pelinovsky, Dmitry E. Edge-localized states on quantum graphs in the limit of large mass. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1295-1335. doi : 10.1016/j.anihpc.2020.11.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.003/

[1] Adami, R. Ground states for NLS on graphs: a subtle interplay of metric and topology, Math. Model. Nat. Phenom., Volume 11 (2016) no. 2, pp. 20-35 | DOI | MR

[2] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D. Constrained energy minimization and orbital stability for the NLS equation on a star graph, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 6, pp. 1289-1310 | DOI | Numdam | MR | Zbl

[3] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D. Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differ. Equ., Volume 257 (2014) no. 10, pp. 3738-3777 | DOI | MR | Zbl

[4] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D. Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy, J. Differ. Equ., Volume 260 (2016) no. 10, pp. 7397-7415 | DOI | MR

[5] Adami, R.; Serra, E.; Tilli, P. NLS ground states on graphs, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 1, pp. 743-761 | DOI | MR

[6] Adami, R.; Serra, E.; Tilli, P. Threshold phenomena and existence results for NLS ground states on metric graphs, J. Funct. Anal., Volume 271 (2016) no. 1, pp. 201-223 | DOI | MR

[7] Adami, R.; Serra, E.; Tilli, P. Multiple positive bound states for the subcritical NLS equation on metric graphs, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 1, p. 5 | DOI | MR

[8] Angulo Pava, J.; Goloshchapova, N. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph, Adv. Differ. Equ., Volume 23 (2018) no. 11–12, pp. 793-846 (MR 3857871) | MR

[9] Angulo Pava, J.; Goloshchapova, N. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph, Discrete Contin. Dyn. Syst., Volume 38 (2018) no. 10, pp. 5039-5066 (MR 3834707) | DOI | MR

[10] Baker, M.; Faber, X. Metrized graphs, Laplacian operators, and electrical networks, Quantum Graphs and Their Applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 15-33 | DOI | MR | Zbl

[11] Band, R.; Berkolaiko, G.; Smilansky, U. Dynamics of nodal points and the nodal count on a family of quantum graphs, Ann. Henri Poincaré, Volume 13 (2012) no. 1, pp. 145-184 | DOI | MR | Zbl

[12] Berkolaiko, G.; Kuchment, P. Introduction to Quantum Graphs, Mathematical Surveys and Monographs, vol. 186, AMS, 2013 | MR | Zbl

[13] Berkolaiko, G.; Kennedy, J.B.; Kurasov, P.; Mugnolo, D. Surgery principles for the spectral analysis of quantum graphs, Trans. Am. Math. Soc., Volume 372 (2019) no. 7, pp. 5153-5197 (MR 4009401) | DOI | MR

[14] Burenkov, V.I. Sobolev Spaces on Domains, Teubner-Texte zur Mathematik, vol. 137, B. G. Teubner, Stuttgart, 1998 | MR | Zbl

[15] Cacciapuoti, C.; Dovetta, S.; Serra, E. Variational and stability properties of constant solutions to the NLS equation on compact metric graphs, Milan J. Math., Volume 86 (2018) no. 2, pp. 305-327 | DOI | MR

[16] Davies, E.B.; Pushnitski, A. Non-Weyl resonance asymptotics for quantum graphs, Anal. PDE, Volume 4 (2011) no. 5, pp. 729-756 | DOI | MR | Zbl

[17] Dovetta, S. Existence of infinitely many stationary solutions of the L2-subcritical and critical NLSE on compact metric graphs, J. Differ. Equ., Volume 264 (2018) no. 7, pp. 4806-4821 (MR 3758538) | DOI | MR

[18] Dovetta, S. Mass-constrained ground states of the stationary NLSE on periodic metric graphs, Nonlinear Differ. Equ. Appl., Volume 26 (2019), p. 30 | DOI | MR

[19] Dovetta, S.; Serra, E.; Tilli, P. Uniqueness and non-uniqueness of prescribed mass NLS ground states on metric graphs, Adv. Math., Volume 374 (2020) | DOI | MR

[20] Exner, P.; Kovařík, H. Quantum Waveguides, Springer, 2015 | DOI | MR

[21] Gilg, S.; Pelinovsky, D.; Schneider, G. Validity of the NLS approximation for periodic quantum graphs, Nonlinear Differ. Equ. Appl., Volume 23 (2016) no. 6, p. 63 | DOI | MR

[22] Gnutzmann, S.; Smilansky, U.; Derevyanko, S. Stationary scattering from a nonlinear network, Phys. Rev. A, Volume 83 (2011) | DOI

[23] Goodman, R.H. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph, Discrete Contin. Dyn. Syst., Volume 39 (2019) no. 4, pp. 2203-2232 (MR 3927510) | DOI | MR

[24] Goodman, R.H. Quantum graph software package, 2019 https://web.njit.edu/~goodman/roy/Numerics.html

[25] Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, Elsevier/Academic Press, Amsterdam, 2015 (Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll) | MR | Zbl

[26] Harrell, E.M. II; Maltsev, A.V. Localization and landscape functions on quantum graphs, Trans. Am. Math. Soc., Volume 373 (2020) no. 3, pp. 1701-1729 | DOI | MR

[27] Kairzhan, A. Orbital instability of standing waves for NLS equation on star graphs, Proc. Am. Math. Soc., Volume 147 (2019) no. 7, pp. 2911-2924 | DOI | MR

[28] Kairzhan, A.; Marangell, R.; Pelinovsky, D.E.; Liang, X.K. Existence of standing waves on a flower graph, J. Differ. Equ., Volume 271 (2021), pp. 719-763 | DOI | MR

[29] Kairzhan, A.; Pelinovsky, D.E. Nonlinear instability of half-solitons on star graphs, J. Differ. Equ., Volume 264 (2018) no. 12, pp. 7357-7383 | DOI | MR

[30] Kairzhan, A.; Pelinovsky, D.E. Spectral stability of shifted states on star graphs, J. Phys. A, Math. Theor., Volume 51 (2018) no. 9 | DOI | MR

[31] Kairzhan, A.; Pelinovsky, D.E.; Goodman, R.H. Drift of spectrally stable shifted states on star graphs, SIAM J. Appl. Dyn. Syst., Volume 18 (2019), pp. 1723-1755 | DOI | MR

[32] Kottos, T.; Smilansky, U. Chaotic scattering on graphs, Phys. Rev. Lett., Volume 85 (2000) no. 5, pp. 968-971 | DOI

[33] Marzuola, J.L.; Pelinovsky, D.E. Ground state on the dumbbell graph, Appl. Math. Res. Express (2016) no. 1, pp. 98-145 | DOI | MR

[34] Nayfeh, A.H.; Balachandran, B. Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, John Wiley & Sons, 2008

[35] Noja, D. Nonlinear Schrödinger equation on graphs: recent results and open problems, Philos. Trans. R. Soc. Ser. A, Math. Phys. Eng. Sci., Volume 372 (2014) no. 2007 | MR

[36] Noja, D.; Pelinovsky, D. Standng waves of the quintic NLS equation on the tadpole graph, Calc. Var. Partial Differ. Equ., Volume 59 (2020), p. 173 | DOI | MR

[37] Noja, D.; Pelinovsky, D.; Shaikhova, G. Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph, Nonlinearity, Volume 28 (2015) no. 7, pp. 2343-2378 | DOI | MR

[38] Noja, D.; Rolando, S.; Secchi, S. Standing waves for the NLS on the double-bridge graph and a rational–irrational dichotomy, J. Differ. Equ., Volume 266 (2019) no. 1, pp. 147-178 | DOI | MR

[39] Olson, D.; Shukla, S.; Simpson, G.; Spirn, D. Petviashvilli's method for the Dirichlet problem, J. Sci. Comput., Volume 66 (2016) no. 1, pp. 296-320 | DOI | MR

[40] Pankov, A. Nonlinear Schrödinger equations on periodic metric graphs, Discrete Contin. Dyn. Syst., Ser. A, Volume 38 (2018) no. 2, pp. 697-714 | DOI | MR

[41] Pelinovsky, D.; Schneider, G. Bifurcations of standing localized waves on periodic graphs, Ann. Henri Poincaré, Volume 18 (2017) no. 4, pp. 1185-1211 | DOI | MR

[42] Pelinovsky, D.E.; Stepanyants, Y.A. Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations, SIAM J. Numer. Anal., Volume 42 (2004) no. 3, pp. 1110-1127 | DOI | MR | Zbl

[43] Pokornyĭ, Y.V.; Pryadiev, V.L. Some problems in the qualitative Sturm-Liouville theory on a spatial network, Usp. Mat. Nauk, Volume 59 (2004) no. 3(357), pp. 115-150 (translation in Russian Math. Surv., 59, 3, 2004, pp. 515-552) | MR | Zbl

[44] Serra, E.; Tentarelli, L. Bound states of the NLS equation on metric graphs with localized nonlinearities, J. Differ. Equ., Volume 260 (2016) no. 7, pp. 5627-5644 | DOI | MR

[45] Serra, E.; Tentarelli, L. On the lack of bound states for certain NLS equations on metric graphs, Nonlinear Anal., Theory Methods Appl., Volume 145 (2016), pp. 68-82 | DOI | MR

[46] Tentarelli, L. NLS ground states on metric graphs with localized nonlinearities, J. Appl. Math. Anal. Appl., Volume 433 (2016) no. 1, pp. 291-304 | DOI | MR

[47] Zeidler, E. Nonlinear Functional Analysis and Its Applications. I – Fixed-Point Theorems , Springer-Verlag, New York, 1986 (Translated from the German by Peter R. Wadsack) | MR | Zbl

Cité par Sources :