Critical chirality in elliptic systems
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1373-1405.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We establish the regularity in 2 dimension of L2 solutions to critical elliptic systems in divergence form involving chirality operators of finite W1,2-energy.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.006
Classification : 35J47, 35B65, 34L40, 20G20
Mots-clés : Second order elliptic systems, Regularity, Integrability by compensation, Dirac operator, Quaternion algebra
Da Lio, Francesca 1 ; Rivière, Tristan 1

1 Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland
@article{AIHPC_2021__38_5_1373_0,
     author = {Da Lio, Francesca and Rivi\`ere, Tristan},
     title = {Critical chirality in elliptic systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1373--1405},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.006},
     mrnumber = {4300926},
     zbl = {1479.35332},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.006/}
}
TY  - JOUR
AU  - Da Lio, Francesca
AU  - Rivière, Tristan
TI  - Critical chirality in elliptic systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1373
EP  - 1405
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.006/
DO  - 10.1016/j.anihpc.2020.11.006
LA  - en
ID  - AIHPC_2021__38_5_1373_0
ER  - 
%0 Journal Article
%A Da Lio, Francesca
%A Rivière, Tristan
%T Critical chirality in elliptic systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1373-1405
%V 38
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.006/
%R 10.1016/j.anihpc.2020.11.006
%G en
%F AIHPC_2021__38_5_1373_0
Da Lio, Francesca; Rivière, Tristan. Critical chirality in elliptic systems. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1373-1405. doi : 10.1016/j.anihpc.2020.11.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.006/

[1] Adams, D.R. A note on Riesz potentials, Duke Math. J., Volume 42 (1975) no. 4, pp. 765-778 | DOI | MR | Zbl

[2] Bourgain, J.; Brezis, H. On the equation ÷Y=f and application to control of phases, J. Am. Math. Soc., Volume 16 (2003) no. 2, pp. 393-426 | DOI | MR | Zbl

[3] Coifman, R.R.; Rochberg, R.; Weiss, Guido Factorization theorems for Hardy spaces in several variables, Ann. Math. (2), Volume 103 (1976) no. 3, pp. 611-635 | DOI | MR | Zbl

[4] Coifman, R.; Lions, P.-L.; Meyer, Y.; Semmes, S. Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), Volume 72 (1993) no. 3, pp. 247-286 | MR | Zbl

[5] Da Lio, F.; Rivière, T. Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., Volume 227 (2011), pp. 1300-1348 | DOI | MR | Zbl

[6] Da Lio, F.; Rivière, T. 3-commutators revisited, Nonlinear Anal., Volume 165 (2017), pp. 182-197 (preprint 2019) | MR | Zbl

[7] Delort, J.M. Existence de nappes de tourbillon en dimension deux, J. Am. Math. Soc., Volume 4 (1991) no. 3, pp. 553-586 (in French) | DOI | MR | Zbl

[8] Evans, L.C.; Müller, S. Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, J. Am. Math. Soc., Volume 7 (1994) no. 1, pp. 199-219 | DOI | MR | Zbl

[9] Grafakos, L. Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014 | MR | Zbl

[10] Hélein, F. Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[11] Hélein, F.; Romon, P. Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions, Comment. Math. Helv., Volume 75 (2000) no. 4, pp. 668-680 | DOI | MR | Zbl

[12] Jin, T.; Maz'ya, V.; Van Schaftingen, J. Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 13–14, pp. 773-778 | DOI | MR | Zbl

[13] Maz'ya, V. Bourgain-Brezis type inequality with explicit constants, Interpolation Theory and Applications, Contemp. Math., vol. 445, Amer. Math. Soc., Providence, RI, 2007, pp. 247-252 | DOI | MR | Zbl

[14] Rivière, T. Conservation laws for conformally invariant variational problems, Invent. Math., Volume 168 (2007) no. 1, pp. 1-22 | DOI | MR | Zbl

[15] Rivière, T. Sub-criticality of Schrödinger systems with antisymmetric potentials, J. Math. Pures Appl. (9), Volume 95 (2011) no. 3, pp. 260-276 | DOI | MR | Zbl

[16] Rivière, T. Sequences of smooth global isothermic immersions, Commun. Partial Differ. Equ., Volume 38 (2013) no. 2, pp. 276-303 | DOI | MR | Zbl

[17] T. Rivière, Personal communication.

[18] Simon, B. Schrödinger semigroups, Bull. Am. Math. Soc., Volume 7 (1982) no. 3, pp. 447-526 | DOI | MR | Zbl

[19] Stein, E.M. Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl

[20] Uhlenbeck, K. Connections with Lp bounds on curvature, Commun. Math. Phys., Volume 83 (1982) no. 1, pp. 31-42 | DOI | MR | Zbl

[21] Wente, H.C. An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., Volume 26 (1969), pp. 318-344 | DOI | MR | Zbl

[22] Zhang, F. Quaternions and matrices of quaternions, Linear Algebra Appl., Volume 251 ( January 1997 ) no. 15, pp. 21-57 | MR | Zbl

Cité par Sources :