In this paper we consider the incompressible Euler equation in a simply-connected bounded planar domain. We study the confinement of the vorticity around a stationary point vortex. We show that the power law confinement around the center of the unit disk obtained in [2] remains true in the case of a stationary point vortex in a simply-connected bounded domain. The domain and the stationary point vortex must satisfy a condition expressed in terms of the conformal mapping from the domain to the unit disk. Explicit examples are discussed at the end.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.009
@article{AIHPC_2021__38_5_1461_0, author = {Donati, Martin and Iftimie, Dragoș}, title = {Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1461--1485}, publisher = {Elsevier}, volume = {38}, number = {5}, year = {2021}, doi = {10.1016/j.anihpc.2020.11.009}, mrnumber = {4300929}, zbl = {1471.76020}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.009/} }
TY - JOUR AU - Donati, Martin AU - Iftimie, Dragoș TI - Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1461 EP - 1485 VL - 38 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.009/ DO - 10.1016/j.anihpc.2020.11.009 LA - en ID - AIHPC_2021__38_5_1461_0 ER -
%0 Journal Article %A Donati, Martin %A Iftimie, Dragoș %T Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1461-1485 %V 38 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.009/ %R 10.1016/j.anihpc.2020.11.009 %G en %F AIHPC_2021__38_5_1461_0
Donati, Martin; Iftimie, Dragoș. Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1461-1485. doi : 10.1016/j.anihpc.2020.11.009. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.009/
[1] Complex Analysis, McGraw Hill Publishing Co., New York, 1966 | MR | Zbl
[2] Long time evolution of concentrated Euler flows with planar symmetry, SIAM J. Math. Anal., Volume 50 (2018) no. 1, pp. 735-760 | DOI | MR | Zbl
[3] Euler evolution of a concentrated vortex in planar bounded domains, 2018 | arXiv
[4] Convergence of the point vortex method for 2-D Euler equations, Commun. Pure Appl. Math., Volume 43 (1990) no. 3, pp. 415-430 | DOI | MR | Zbl
[5] On the Motion of a Vortex in Two-Dimensional Flow of an Ideal Fluid in Simply and Multiply Connected Domains, Royal Institute of Technology, 1979 (Trita-MAT-1979-7)
[6] Euler equations on general planar domains, 2020 | arXiv | MR | Zbl
[7] Ordinary Differential Equations, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104, 1910 | MR | Zbl
[8] Über integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., Volume 55 (1858), pp. 25-55 | MR | Zbl
[9] Large time behavior in perfect incompressible flows, Partial Differential Equations and Applications, Sémin. Congr., vol. 15, Soc. Math. France, Paris, 2007, pp. 119-179 | MR | Zbl
[10] Self-similar point vortices and confinement of vorticity, Commun. Partial Differ. Equ., Volume 43 (2018) no. 3, pp. 347-363 | DOI | MR | Zbl
[11] On the evolution of compactly supported planar vorticity, Commun. Partial Differ. Equ., Volume 24 (1999) no. 9–10, pp. 159-182 | MR | Zbl
[12] On conformal representations of the interior of an ellipse, Ann. Acad. Sci. Fenn., Math., Volume 31 (2006) no. 2, pp. 329-348 | MR | Zbl
[13] The Euler equations in planar domains with corners, Arch. Ration. Mech. Anal., Volume 234 (2019) no. 1, pp. 57-79 | DOI | MR | Zbl
[14] Vortex Methods in Two-Dimensional Fluid Dynamics, Lecture Notes in Physics, Springer-Verlag, 1984 | MR | Zbl
[15] Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, Springer, New York, 1993 | MR | Zbl
[16] Vortices and localization in Euler flows, Commun. Math. Phys., Volume 154 (1993) no. 1, pp. 49-61 | DOI | MR | Zbl
[17] Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., Volume 37 (1933) no. 1, pp. 698-726 | DOI | JFM | MR | Zbl
[18] Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys., Volume 3 (1963) no. 6, pp. 1407-1456 | DOI | MR | Zbl
Cité par Sources :