We consider solutions of the generalized Korteweg-de Vries equations (gKdV) which are non dispersive in some sense and which remain close to multi-solitons. We show that these solutions are necessarily pure multi-solitons. For the Korteweg-de Vries equation (KdV) and the modified Korteweg-de Vries equation (mKdV) in particular, we obtain a characterization of multi-solitons and multi-breathers in terms of non dispersion.
Mots-clés : Generalized KdV equations, Solitons, Multi-solitons
@article{AIHPC_2021__38_5_1525_0, author = {Friederich, Xavier}, title = {Non dispersive solutions of the generalized {Korteweg-de} {Vries} equations are typically multi-solitons}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1525--1552}, publisher = {Elsevier}, volume = {38}, number = {5}, year = {2021}, doi = {10.1016/j.anihpc.2020.11.010}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.010/} }
TY - JOUR AU - Friederich, Xavier TI - Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1525 EP - 1552 VL - 38 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.010/ DO - 10.1016/j.anihpc.2020.11.010 LA - en ID - AIHPC_2021__38_5_1525_0 ER -
%0 Journal Article %A Friederich, Xavier %T Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1525-1552 %V 38 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.010/ %R 10.1016/j.anihpc.2020.11.010 %G en %F AIHPC_2021__38_5_1525_0
Friederich, Xavier. Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1525-1552. doi : 10.1016/j.anihpc.2020.11.010. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.010/
[1] Nonlinear stability of MKDV breathers, Commun. Partial Differ. Equ., Volume 324 (2013), pp. 233-262 | DOI | Zbl
[2] Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 411 (1987), pp. 395-412 | DOI | Zbl
[3] Soliton resolution for the modified KdV equation, 2019 | arXiv
[4] Existence and regularity for solutions of the Korteweg-de Vries equation, Arch. Ration. Mech. Anal., Volume 71 (1979), pp. 143-175 | DOI | Zbl
[5] Multi-soliton solutions for the supercritical gKdV equations, Commun. Partial Differ. Equ., Volume 36 (2010), pp. 380-419 | DOI | Zbl
[6] Construction of multi-soliton solutions for the -supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011), pp. 273-302 | DOI | Zbl
[7] The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions, Math. Methods Appl. Sci., Volume 5 (1983), pp. 97-116 | DOI | Zbl
[8] Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., Volume 74 (1987), pp. 160-197 | DOI | Zbl
[9] Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527-620 | DOI | Zbl
[10] Blow-up solutions for -supercritical gKdV equations with exactly k blow-up points, Nonlinearity, Volume 30 (2016) | DOI
[11] Smoothness and exponential decay of -compact solutions of the generalized KdV equations, Commun. Partial Differ. Equ., Volume 29 (2005), pp. 157-171 | DOI | Zbl
[12] Asymptotic -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Am. J. Math., Volume 127 (2005), pp. 1103-1140 | DOI | Zbl
[13] A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl., Volume 79 (2000), pp. 339-425 | DOI | Zbl
[14] Asymptotic stability of solitons for subcritical gKdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 219-254 | DOI | Zbl
[15] Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. Funct. Anal., Volume 11 (2001), pp. 74-123 | DOI | Zbl
[16] Blow up in finite time and dynamics of blow up solutions for the -critical generalized KdV equation, J. Am. Math. Soc., Volume 15 (2002) | DOI | Zbl
[17] Nonexistence of blow-up solution with minimal -mass for the critical gKdV equation, Duke Math. J., Volume 115 (2002), pp. 385-408 | DOI | Zbl
[18] Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, Volume 18 (2005), pp. 55-80 | DOI | Zbl
[19] Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., Volume 341 (2008), pp. 391-427 | DOI | Zbl
[20] Description of two soliton collision for the quartic gKdV equation, Ann. Math., Volume 174 (2011), pp. 757-857 | DOI | Zbl
[21] Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., Volume 183 (2011), pp. 563-648 | DOI | Zbl
[22] On the nonexistence of pure multi-solitons for the quartic gKdV equation, Int. Math. Res. Not. (2015), pp. 688-739 | DOI | Zbl
[23] Blow up for the critical generalized Korteweg–de Vries equation. I: dynamics near the soliton, Acta Math., Volume 212 (2014), pp. 59-140 | DOI | Zbl
[24] Blow up for the critical generalized Korteweg–de Vries equation. II: minimal mass dynamics, J. Eur. Math. Soc., Volume 17 (2015), pp. 1855-1925 | DOI
[25] Blow up for the critical generalized Korteweg–de Vries equation. III: exotic regimes, Ann. Sc. Norm. Super. Pisa, Volume XIV (2015), pp. 575-631
[26] Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002), pp. 347-373 | DOI | Zbl
[27] The Korteweg-de Vries equation: a survey of results, SIAM Rev., Volume 18 (1976), pp. 412-459 | DOI | Zbl
[28] On the inelastic 2-soliton collision for gKdV equations with general nonlinearity, Int. Math. Res. Not., Volume 9 (2010), pp. 1624-1719 | DOI | Zbl
[29] Asymptotic stability of solitary waves, Commun. Math. Phys., Volume 164 (1994), pp. 305-349 | DOI | Zbl
[30] Asymptotic Analysis of Solitons Problems, Springer-Verlag, Berlin, 1986 | DOI | Zbl
[31] A. Semenov, On the existence and uniqueness of multi-breathers of (mKdV), preprint, unpublished results.
[32] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986), pp. 51-67 | DOI | Zbl
Cité par Sources :