Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1525-1552.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider solutions of the generalized Korteweg-de Vries equations (gKdV) which are non dispersive in some sense and which remain close to multi-solitons. We show that these solutions are necessarily pure multi-solitons. For the Korteweg-de Vries equation (KdV) and the modified Korteweg-de Vries equation (mKdV) in particular, we obtain a characterization of multi-solitons and multi-breathers in terms of non dispersion.

DOI : 10.1016/j.anihpc.2020.11.010
Classification : 35B53, 35Q53, 35B40, 35B65
Mots-clés : Generalized KdV equations, Solitons, Multi-solitons
Friederich, Xavier 1

1 Institut de Recherche Mathématique Avancée UMR 7501, Université de Strasbourg, Strasbourg, France
@article{AIHPC_2021__38_5_1525_0,
     author = {Friederich, Xavier},
     title = {Non dispersive solutions of the generalized {Korteweg-de} {Vries} equations are typically multi-solitons},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1525--1552},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.010},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.010/}
}
TY  - JOUR
AU  - Friederich, Xavier
TI  - Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1525
EP  - 1552
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.010/
DO  - 10.1016/j.anihpc.2020.11.010
LA  - en
ID  - AIHPC_2021__38_5_1525_0
ER  - 
%0 Journal Article
%A Friederich, Xavier
%T Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1525-1552
%V 38
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.010/
%R 10.1016/j.anihpc.2020.11.010
%G en
%F AIHPC_2021__38_5_1525_0
Friederich, Xavier. Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1525-1552. doi : 10.1016/j.anihpc.2020.11.010. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.11.010/

[1] Alejo, M.A.; Muñoz, C. Nonlinear stability of MKDV breathers, Commun. Partial Differ. Equ., Volume 324 (2013), pp. 233-262 | DOI | Zbl

[2] Bona, J.L.; Souganidis, P.E.; Strauss, W.A. Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 411 (1987), pp. 395-412 | DOI | Zbl

[3] Chen, G.; Liu, J. Soliton resolution for the modified KdV equation, 2019 | arXiv

[4] Cohen, A. Existence and regularity for solutions of the Korteweg-de Vries equation, Arch. Ration. Mech. Anal., Volume 71 (1979), pp. 143-175 | DOI | Zbl

[5] Combet, V. Multi-soliton solutions for the supercritical gKdV equations, Commun. Partial Differ. Equ., Volume 36 (2010), pp. 380-419 | DOI | Zbl

[6] Côte, R.; Martel, Y.; Merle, F. Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011), pp. 273-302 | DOI | Zbl

[7] Eckhaus, W.; Schuur, P.C. The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions, Math. Methods Appl. Sci., Volume 5 (1983), pp. 97-116 | DOI | Zbl

[8] Grillakis, M.; Shatah, J.; Strauss, W. Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., Volume 74 (1987), pp. 160-197 | DOI | Zbl

[9] Kenig, C.E.; Ponce, G.; Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527-620 | DOI | Zbl

[10] Lan, Y. Blow-up solutions for L2-supercritical gKdV equations with exactly k blow-up points, Nonlinearity, Volume 30 (2016) | DOI

[11] Laurent, C.; Martel, Y. Smoothness and exponential decay of L2-compact solutions of the generalized KdV equations, Commun. Partial Differ. Equ., Volume 29 (2005), pp. 157-171 | DOI | Zbl

[12] Martel, Y. Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Am. J. Math., Volume 127 (2005), pp. 1103-1140 | DOI | Zbl

[13] Martel, Y.; Merle, F. A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl., Volume 79 (2000), pp. 339-425 | DOI | Zbl

[14] Martel, Y.; Merle, F. Asymptotic stability of solitons for subcritical gKdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 219-254 | DOI | Zbl

[15] Martel, Y.; Merle, F. Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. Funct. Anal., Volume 11 (2001), pp. 74-123 | DOI | Zbl

[16] Martel, Y.; Merle, F. Blow up in finite time and dynamics of blow up solutions for the L2-critical generalized KdV equation, J. Am. Math. Soc., Volume 15 (2002) | DOI | Zbl

[17] Martel, Y.; Merle, F. Nonexistence of blow-up solution with minimal L2-mass for the critical gKdV equation, Duke Math. J., Volume 115 (2002), pp. 385-408 | DOI | Zbl

[18] Martel, Y.; Merle, F. Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, Volume 18 (2005), pp. 55-80 | DOI | Zbl

[19] Martel, Y.; Merle, F. Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., Volume 341 (2008), pp. 391-427 | DOI | Zbl

[20] Martel, Y.; Merle, F. Description of two soliton collision for the quartic gKdV equation, Ann. Math., Volume 174 (2011), pp. 757-857 | DOI | Zbl

[21] Martel, Y.; Merle, F. Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., Volume 183 (2011), pp. 563-648 | DOI | Zbl

[22] Martel, Y.; Merle, F. On the nonexistence of pure multi-solitons for the quartic gKdV equation, Int. Math. Res. Not. (2015), pp. 688-739 | DOI | Zbl

[23] Martel, Y.; Merle, F.; Raphaël, P. Blow up for the critical generalized Korteweg–de Vries equation. I: dynamics near the soliton, Acta Math., Volume 212 (2014), pp. 59-140 | DOI | Zbl

[24] Martel, Y.; Merle, F.; Raphaël, P. Blow up for the critical generalized Korteweg–de Vries equation. II: minimal mass dynamics, J. Eur. Math. Soc., Volume 17 (2015), pp. 1855-1925 | DOI

[25] Martel, Y.; Merle, F.; Raphaël, P. Blow up for the critical generalized Korteweg–de Vries equation. III: exotic regimes, Ann. Sc. Norm. Super. Pisa, Volume XIV (2015), pp. 575-631

[26] Martel, Y.; Merle, F.; Tsai, T.P. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002), pp. 347-373 | DOI | Zbl

[27] Miura, R.M. The Korteweg-de Vries equation: a survey of results, SIAM Rev., Volume 18 (1976), pp. 412-459 | DOI | Zbl

[28] Muñoz, C. On the inelastic 2-soliton collision for gKdV equations with general nonlinearity, Int. Math. Res. Not., Volume 9 (2010), pp. 1624-1719 | DOI | Zbl

[29] Pego, R.L.; Weinstein, M.I. Asymptotic stability of solitary waves, Commun. Math. Phys., Volume 164 (1994), pp. 305-349 | DOI | Zbl

[30] Schuur, P.C. Asymptotic Analysis of Solitons Problems, Springer-Verlag, Berlin, 1986 | DOI | Zbl

[31] A. Semenov, On the existence and uniqueness of multi-breathers of (mKdV), preprint, unpublished results.

[32] Weinstein, M.I. Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986), pp. 51-67 | DOI | Zbl

Cité par Sources :