We prove the existence of a -normalized solitary wave solution for the Maxwell-Dirac equations in (3+1)-Minkowski space. In addition, for the Coulomb-Dirac model, describing fermions with attractive Coulomb interactions in the mean-field limit, we prove the existence of the (positive) energy minimizer.
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.006
Mots-clés : Maxwell-Dirac equations, Solitary waves, Variational methods
@article{AIHPC_2021__38_6_1681_0, author = {Nolasco, Margherita}, title = {A normalized solitary wave solution of the {Maxwell-Dirac} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1681--1702}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2021}, doi = {10.1016/j.anihpc.2020.12.006}, mrnumber = {4327893}, zbl = {1475.49060}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.12.006/} }
TY - JOUR AU - Nolasco, Margherita TI - A normalized solitary wave solution of the Maxwell-Dirac equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1681 EP - 1702 VL - 38 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.12.006/ DO - 10.1016/j.anihpc.2020.12.006 LA - en ID - AIHPC_2021__38_6_1681_0 ER -
%0 Journal Article %A Nolasco, Margherita %T A normalized solitary wave solution of the Maxwell-Dirac equations %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1681-1702 %V 38 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.12.006/ %R 10.1016/j.anihpc.2020.12.006 %G en %F AIHPC_2021__38_6_1681_0
Nolasco, Margherita. A normalized solitary wave solution of the Maxwell-Dirac equations. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1681-1702. doi : 10.1016/j.anihpc.2020.12.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.12.006/
[1] Solitary waves for Maxwell-Dirac and Coulomb-Dirac models, Ann. Inst. Henri Poincaré A, Phys. Théor., Volume 68 (1998) no. 2, pp. 229-244 | Numdam | MR | Zbl
[2] Normalized solutions to strongly indefinite semilinear equations, Adv. Nonlinear Stud., Volume 6 (2006) no. 2, pp. 323-347 | DOI | MR | Zbl
[3] Small amplitude solitary waves in the Dirac-Maxwell system, Commun. Pure Appl. Anal., Volume 17 (2018) no. 4, pp. 1349-1370 | DOI | MR | Zbl
[4] Polarons as stable solitary wave solutions to the Dirac-Coulomb system, J. Phys. A, Volume 46 (2013) no. 43 | MR | Zbl
[5] Ground states for pseudo-relativistic Hartree equations of critical type, Rev. Mat. Iberoam., Volume 29 (2013) no. 4, pp. 1421-1436 | DOI | MR | Zbl
[6] Ground state for the relativistic one electron atom in a self-generated electromagnetic field, SIAM J. Math. Anal., Volume 51 (2019) no. 3, pp. 2206-2230 | DOI | MR | Zbl
[7] Variational characterization for eigenvalues of Dirac operators, Calc. Var. Partial Differ. Equ., Volume 10 (2000) no. 4, pp. 321-347 | DOI | MR | Zbl
[8] Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Partial Differ. Equ., Volume 4 (1996) no. 3, pp. 265-281 | DOI | MR | Zbl
[9] Solutions of the Dirac-Fock equations for atoms and molecules, Commun. Math. Phys., Volume 203 (1999) no. 3, pp. 499-530 | DOI | MR | Zbl
[10] Boson stars as solitary waves, Commun. Math. Phys., Volume 274 (2007) no. 1, pp. 1-30 | DOI | MR | Zbl
[11] Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., Volume 57 ( 1976/77 ) no. 2, pp. 93-105 | DOI | MR | Zbl
[12] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | Numdam | MR | Zbl
[13] A solitary wave solution of the Maxwell-Dirac equations, J. Phys. A, Volume 28 (1995) no. 18, pp. 5385-5392 | DOI | MR | Zbl
[14] The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
Cité par Sources :
Research partially supported by MIUR grant PRIN 2015 2015KB9WPT, “Variational methods, with applications to problems in mathematical physics and geometry”.