We consider the vanishing viscosity limit for a model of a general non-Newtonian compressible fluid in
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.01.001
@article{AIHPC_2021__38_6_1725_0, author = {Feireisl, Eduard and Novotn\'y, Anton{\'\i}n}, title = {Stability of planar rarefaction waves under general viscosity perturbation of the isentropic {Euler} system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1725--1737}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2021}, doi = {10.1016/j.anihpc.2021.01.001}, mrnumber = {4327895}, zbl = {1494.35132}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2021.01.001/} }
TY - JOUR AU - Feireisl, Eduard AU - Novotný, Antonín TI - Stability of planar rarefaction waves under general viscosity perturbation of the isentropic Euler system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1725 EP - 1737 VL - 38 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2021.01.001/ DO - 10.1016/j.anihpc.2021.01.001 LA - en ID - AIHPC_2021__38_6_1725_0 ER -
%0 Journal Article %A Feireisl, Eduard %A Novotný, Antonín %T Stability of planar rarefaction waves under general viscosity perturbation of the isentropic Euler system %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1725-1737 %V 38 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2021.01.001/ %R 10.1016/j.anihpc.2021.01.001 %G en %F AIHPC_2021__38_6_1725_0
Feireisl, Eduard; Novotný, Antonín. Stability of planar rarefaction waves under general viscosity perturbation of the isentropic Euler system. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1725-1737. doi : 10.1016/j.anihpc.2021.01.001. https://www.numdam.org/articles/10.1016/j.anihpc.2021.01.001/
[1] Generalized solutions to models of compressible viscous fluids, Discrete Contin. Dyn. Syst., Ser. A, Volume 41 (2021) no. 1, pp. 1-28 | DOI | MR | Zbl
[2] The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., Volume 70 (1979), pp. 167-179 | DOI | MR | Zbl
[3] Stability of rarefaction waves and vacuum states for the multidimensional Euler equations, J. Hyperbolic Differ. Equ., Volume 4 (2007) no. 1, pp. 105-122 | DOI | MR | Zbl
[4] Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow, Commun. Pure Appl. Math., Volume 63 (2010) no. 11, pp. 1469-1504 | DOI | MR | Zbl
[5] Global ill-posedness of the isentropic system of gas dynamics, Commun. Pure Appl. Math., Volume 68 (2015) no. 7, pp. 1157-1190 | DOI | MR | Zbl
[6] On the energy dissipation rate of solutions to the compressible isentropic Euler system, Arch. Ration. Mech. Anal., Volume 214 (2014) no. 3, pp. 1019-1049 | DOI | MR | Zbl
[7] Non–uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data, 2019 (Archive Preprint Series) | arXiv | MR | Zbl
[8] On uniqueness of dissipative solutions to the isentropic Euler system, Commun. Partial Differ. Equ., Volume 44 (2019) no. 12, pp. 1285-1298 | DOI | MR | Zbl
[9] Uniqueness of rarefaction waves in multidimensional compressible Euler system, J. Hyperbolic Differ. Equ., Volume 12 (2015) no. 3, pp. 489-499 | DOI | MR | Zbl
[10] Stability of the isentropic Riemann solutions of the full multidimensional Euler system, SIAM J. Math. Anal., Volume 47 (2015) no. 3, pp. 2416-2425 | DOI | MR | Zbl
[11] On the long–time behavior of dissipative solutions to models of non-Newtonian compressible fluids, 2020 (Archive Preprint Series) | arXiv | MR | Zbl
[12] Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal., Volume 121 (1992) no. 3, pp. 235-265 | DOI | MR | Zbl
[13] The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data, Indiana Univ. Math. J., Volume 38 (1989) no. 4, pp. 861-915 | DOI | MR | Zbl
[14] Dissipative solutions to compressible Navier-Stokes equations with general inflow-outflow data: existence, stability and weak-strong uniqueness, J. Math. Fluid Mech. (2021) (in press) | MR | Zbl
[15] Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier–Stokes equations, Commun. Math. Phys., Volume 376 (2020), pp. 353-384 | DOI | MR | Zbl
[16] Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998 | MR | Zbl
[17] The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock, Arch. Ration. Mech. Anal., Volume 227 (2018) no. 3, pp. 967-994 | DOI | MR | Zbl
[18] Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Jpn. J. Appl. Math., Volume 3 (1986) no. 1, pp. 1-13 | DOI | MR | Zbl
[19] Asymptotics toward rarefaction waves and vacuum for 1-D compressible Navier-Stokes equations, SIAM J. Math. Anal., Volume 42 (2010) no. 3, pp. 1404-1412 | DOI | MR | Zbl
[20] Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases, Commun. Pure Appl. Math., Volume 46 (1993) no. 5, pp. 621-665 | DOI | MR | Zbl
Cité par Sources :