Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1739-1762.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We prove a quantitative and global in time semiclassical limit from the Hartree to the Vlasov equation in the case of a singular interaction potential in dimension d3, including the case of a Coulomb singularity in dimension d=3. This result holds for initial data concentrated enough in the sense that some space moments are initially sufficiently small. As an intermediate result, we also obtain quantitative bounds on the space and velocity moments of even order and the asymptotic behavior of the spatial density due to dispersion effects, uniform in the Planck constant ħ.

DOI : 10.1016/j.anihpc.2021.01.004
Classification : 82C10, 35Q41, 35Q55, 82C05, 35Q83
Mots-clés : Hartree equation, Nonlinear Schrödinger equation, Vlasov equation, Coulomb interaction, Gravitational interaction, Semiclassical limit
Lafleche, Laurent 1, 2

1 a CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, PSL Research University, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
2 b CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
@article{AIHPC_2021__38_6_1739_0,
     author = {Lafleche, Laurent},
     title = {Global semiclassical limit from {Hartree} to {Vlasov} equation for concentrated initial data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1739--1762},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2021},
     doi = {10.1016/j.anihpc.2021.01.004},
     mrnumber = {4327896},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2021.01.004/}
}
TY  - JOUR
AU  - Lafleche, Laurent
TI  - Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1739
EP  - 1762
VL  - 38
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2021.01.004/
DO  - 10.1016/j.anihpc.2021.01.004
LA  - en
ID  - AIHPC_2021__38_6_1739_0
ER  - 
%0 Journal Article
%A Lafleche, Laurent
%T Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1739-1762
%V 38
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2021.01.004/
%R 10.1016/j.anihpc.2021.01.004
%G en
%F AIHPC_2021__38_6_1739_0
Lafleche, Laurent. Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1739-1762. doi : 10.1016/j.anihpc.2021.01.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2021.01.004/

[1] Ambrosio, L.; Figalli, A.; Friesecke, G.; Giannoulis, J.; Paul, T. Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data, Commun. Pure Appl. Math., Volume 64 (2011) no. 9, pp. 1199-1242 | DOI | MR | Zbl

[2] Ambrosio, L.; Friesecke, G.; Giannoulis, J. Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions, Commun. Partial Differ. Equ., Volume 35 ( July 2010 ) no. 8, pp. 1490-1515 | DOI | MR | Zbl

[3] Amour, L.; Khodja, M.; Nourrigat, J. The classical limit of the Heisenberg and time-dependent Hartree–Fock equations: the Wick symbol of the solution, Math. Res. Lett., Volume 20 ( Jan. 2013 ) no. 1, pp. 119-139 | DOI | MR | Zbl

[4] Amour, L.; Khodja, M.; Nourrigat, J. The semiclassical limit of the time dependent Hartree–Fock equation: the Weyl symbol of the solution, Anal. PDE, Volume 6 (2013) no. 7, pp. 1649-1674 | DOI | MR | Zbl

[5] Araki, H. On an inequality of Lieb and Thirring, Lett. Math. Phys., Volume 19 (1990) no. 2, pp. 167-170 | DOI | MR | Zbl

[6] Athanassoulis, A.; Paul, T.; Pezzotti, F.; Pulvirenti, M. Strong semiclassical approximation of Wigner functions for the Hartree dynamics, Rend. Lincei, Mat. Appl., Volume 22 (2011) no. 4, pp. 525-552 | arXiv | MR | Zbl

[7] Bach, V.; Breteaux, S.; Petrat, S.; Pickl, P.; Tzaneteas, T. Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction, J. Math. Pures Appl., Volume 105 ( Jan. 2016 ) no. 1, pp. 1-30 | DOI | MR

[8] Bardos, C.; Degond, P. Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincare (C) Non Linear Anal., Volume 2 (1985) no. 2, pp. 101-118 | DOI | Numdam | MR | Zbl

[9] Bardos, C.; Erdös, L.; Golse, F.; Mauser, N.J.; Yau, H.-T. Derivation of the Schrödinger–Poisson equation from the quantum N -body problem, C. R. Math., Volume 334 ( Jan. 2002 ) no. 6, pp. 515-520 | DOI | MR | Zbl

[10] Bardos, C.; Golse, F.; Mauser, N.J. Weak coupling limit of the N -particle Schrödinger equation, Methods Appl. Anal., Volume 7 (2000) no. 2, pp. 275-294 | DOI | MR | Zbl

[11] Benedikter, N.; Jaksic, V.; Porta, M.; Saffirio, C.; Schlein, B. Mean-field evolution of fermionic mixed states, Commun. Pure Appl. Math., Volume 69 (2016) no. 12, pp. 2250-2303 | DOI | MR

[12] Benedikter, N.; Porta, M.; Saffirio, C.; Schlein, B. From the Hartree dynamics to the Vlasov equation, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 1, pp. 273-334 | DOI | MR

[13] Benedikter, N.; Porta, M.; Schlein, B. Mean-field evolution of fermionic systems, Commun. Math. Phys., Volume 331 ( Nov. 2014 ) no. 3, pp. 1087-1131 | DOI | MR | Zbl

[14] Brezzi, F.; Markowich, P.A. The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation, Math. Methods Appl. Sci., Volume 14 ( Jan. 1991 ) no. 1, pp. 35-61 | DOI | MR | Zbl

[15] Castella, F. L 2 solutions to the Schrödinger–Poisson system: existence, uniqueness, time behaviour, and smoothing effects, Math. Models Methods Appl. Sci., Volume 7 (1997) no. 08, pp. 1051-1083 | DOI | MR | Zbl

[16] Castella, F. Propagation of space moments in the Vlasov-Poisson equation and further results, Ann. Inst. Henri Poincare (C) Non Linear Anal., Volume 16 ( July 1999 ) no. 4, pp. 503-533 | DOI | Numdam | MR | Zbl

[17] DiPerna, R.; Lions, P.-L. Solutions globales d'équations du type Vlasov-Poisson, C. R. Séances Acad. Sci., Sér. I. Math., Volume 307 (1988) no. 12, pp. 655-658 | MR | Zbl

[18] DiPerna, R.J.; Lions, P.-L. Global weak solutions of kinetic equations, Rend. Semin. Mat. Univ. Politec. Torino, Volume 46 (1988) no. 3, pp. 259-288 (Publisher: Citeseer) | MR | Zbl

[19] Dolbeault, J.; Rein, G. Time-dependent rescalings and Lyapunov functionals for the Vlasov-Poisson and Euler-Poisson systems, and for related models of kinetic equations, fluid dynamics and quantum physics, Math. Models Methods Appl. Sci., Volume 11 ( Apr. 2001 ) no. 03, pp. 407-432 | DOI | MR | Zbl

[20] Erdös, L.; Yau, H.-T. Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., Volume 5 (2001) no. 6, pp. 1169-1205 | DOI | MR | Zbl

[21] Fröhlich, J.; Knowles, A. A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction, J. Stat. Phys., Volume 145 ( Oct. 2011 ) no. 1, p. 23 | arXiv | DOI | MR | Zbl

[22] Fröhlich, J.; Knowles, A.; Schwarz, S. On the mean-field limit of bosons with Coulomb two-body interaction, Commun. Math. Phys., Volume 288 ( June 2009 ) no. 3, pp. 1023-1059 | arXiv | DOI | MR | Zbl

[23] Gasser, I.; Illner, R.; Markowich, P.A.; Semiclassical, C. Schmeiser t asymptotics and dispersive effects for Hartree-Fock systems, ESAIM: Math. Model. Numer. Anal., Volume 32 (1998) no. 6, pp. 699-713 | DOI | Numdam | MR | Zbl

[24] Ginibre, J.; Velo, G. On a class of non linear Schrödinger equations with non local interaction, Math. Z., Volume 170 (1980) no. 2, pp. 109-136 | DOI | MR | Zbl

[25] Ginibre, J.; Velo, G. The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. Inst. Henri Poincare (C) Non Linear Anal., Volume 2 ( July 1985 ) no. 4, pp. 309-327 | DOI | Numdam | MR | Zbl

[26] Golse, F.; Mouhot, C.; Paul, T. On the mean field and classical limits of quantum mechanics, Commun. Math. Phys., Volume 343 (2016) no. 1, pp. 165-205 | arXiv | DOI | MR

[27] Golse, F.; Paul, T. The Schrödinger equation in the mean-field and semiclassical regime, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 1, pp. 57-94 | DOI | MR

[28] Golse, F.; Paul, T. Wave packets and the quadratic Monge-Kantorovich distance in quantum mechanics, C. R. Math., Volume 356 ( Feb. 2018 ) no. 2, pp. 177-197 | DOI | MR

[29] Golse, F.; Paul, T. Empirical measures and quantum mechanics: applications to the mean-field limit, Commun. Math. Phys. ( Mar. 2019 ) | arXiv | MR

[30] Golse, F.; Paul, T.; Pulvirenti, M. On the derivation of the Hartree equation from the N -body Schrödinger equation: uniformity in the Planck constant, J. Funct. Anal., Volume 275 ( Oct. 2018 ) no. 7, pp. 1603-1649 | DOI | MR

[31] Graffi, S.; Martinez, A.; Pulvirenti, M. Mean-field approximation of quantum systems and classical limit, Math. Models Methods Appl. Sci., Volume 13 ( Jan. 2003 ) no. 01, pp. 59-73 | arXiv | DOI | MR | Zbl

[32] Gérard, P.; Markowich, P.A.; Mauser, N.J.; Poupaud, F. Homogenization limits and Wigner transforms, Commun. Pure Appl. Math., Volume 50 (1997) no. 4, pp. 323-379 | DOI | MR | Zbl

[33] Hayashi, N.; Ozawa, T. Smoothing effect for some Schrödinger equations, J. Funct. Anal., Volume 85 ( Aug. 1989 ) no. 2, pp. 307-348 | DOI | MR | Zbl

[34] Illner, R.; Zweifel, P.F.; Lange, H. Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and Schrodinger-Poisson systems, Math. Methods Appl. Sci., Volume 17 ( Apr. 1994 ) no. 5, pp. 349-376 | DOI | MR | Zbl

[35] Lafleche, L. Propagation of moments and semiclassical limit from Hartree to Vlasov equation, J. Stat. Phys., Volume 177 ( July 2019 ) no. 1, pp. 20-60 | DOI | MR

[36] Lions, P.-L.; Paul, T. Sur les mesures de Wigner, Rev. Mat. Iberoam., Volume 9 (1993) no. 3, pp. 553-618 | DOI | MR | Zbl

[37] Lions, P.-L.; Perthame, B. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR | Zbl

[38] Loeper, G. Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., Volume 86 ( July 2006 ) no. 1, pp. 68-79 | DOI | MR | Zbl

[39] Markowich, P.A.; Mauser, N.J. The classical limit of a self-consistent quantum Vlasov equation, Math. Models Methods Appl. Sci., Volume 3 ( Feb. 1993 ) no. 01, pp. 109-124 | DOI | MR | Zbl

[40] Mitrouskas, D.; Petrat, S.; Pickl, P. Bogoliubov corrections and trace norm convergence for the Hartree dynamics, Rev. Math. Phys. ( Feb. 2019 ) | arXiv | MR

[41] Pallard, C. Moment propagation for weak solutions to the Vlasov–Poisson system, Commun. Partial Differ. Equ., Volume 37 ( July 2012 ) no. 7, pp. 1273-1285 | DOI | MR | Zbl

[42] Pallard, C. Space moments of the Vlasov-Poisson system: propagation and regularity, SIAM J. Math. Anal., Volume 46 ( Jan. 2014 ) no. 3, pp. 1754-1770 | DOI | MR | Zbl

[43] Perthame, B.; Lions, P.-L. Time decay, propagation of low moments and dispersive effects for kinetic equations, Commun. Partial Differ. Equ., Volume 21 ( Jan. 1996 ) no. 3–4, pp. 801-806 | MR | Zbl

[44] Petrat, S. Hartree corrections in a mean-field limit for fermions with Coulomb interaction, J. Phys. A, Math. Theor., Volume 50 (2017) no. 24 | DOI | MR

[45] Petrat, S.; Pickl, P. A new method and a new scaling for deriving fermionic mean-field dynamics, Math. Phys. Anal. Geom., Volume 19 ( Mar. 2016 ) no. 1, p. 3 | DOI | MR

[46] Pfaffelmoser, K. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equ., Volume 95 ( Feb. 1992 ) no. 2, pp. 281-303 | DOI | MR | Zbl

[47] Pickl, P. A simple derivation of mean field limits for quantum systems, Lett. Math. Phys., Volume 97 ( Aug. 2011 ) no. 2, pp. 151-164 | DOI | MR | Zbl

[48] Porta, M.; Rademacher, S.; Saffirio, C.; Schlein, B. Mean field evolution of fermions with Coulomb interaction, J. Stat. Phys., Volume 166 (2017) no. 6, pp. 1345-1364 | DOI | MR

[49] Rodnianski, I.; Schlein, B. Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys., Volume 291 ( Oct. 2009 ) no. 1, pp. 31-61 | arXiv | DOI | MR | Zbl

[50] Saffirio, C. Mean-field evolution of fermions with singular interaction (Cadamuro, D.; Duell, M.; Dybalski, W.; Simonella, S., eds.), Macroscopic Limits of Quantum Systems, Springer Proceedings in Mathematics & Statistics, Springer International Publishing, Cham, 2018, pp. 81-99 | arXiv | DOI | Zbl

[51] Schaeffer, J. Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Partial Differ. Equ., Volume 16 ( Jan. 1991 ) no. 8–9, pp. 1313-1335 | MR | Zbl

Cité par Sources :