Non-existence of patterns and gradient estimates in semilinear elliptic equations with Neumann boundary conditions
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1869-1895.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We call pattern any non-constant solution of a semilinear elliptic equation with Neumann boundary conditions. A classical theorem of Casten, Holland [20] and Matano [50] states that stable patterns do not exist in convex domains. In this article, we show that the assumptions of convexity of the domain and stability of the pattern in this theorem can be relaxed in several directions. In particular, we propose a general criterion for the non-existence of patterns, dealing with possibly non-convex domains and unstable patterns. Our results unfold the interplay between the geometry of the domain, the stability of patterns, and the C1 norm of the nonlinearity.

In addition, we establish several gradient estimates for the patterns of (1). We prove a general nonlinear Cacciopoli inequality (or an inverse Poincaré inequality), stating that the L2-norm of the gradient of a solution is controlled by the L2-norm of f(u), with a constant that only depends on the domain. This inequality holds for non-homogeneous equations. We also give several flatness estimates.

Our approach relies on the introduction of what we call the Robin-curvature Laplacian. This operator is intrinsic to the domain and contains much information on how the geometry of the domain affects the shape of the solutions.

Finally, we extend our results to unbounded domains. It allows us to improve the results of our previous paper [54] and to extend some results on De Giorgi's conjecture to a larger class of domains.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.002
Classification : No, 35B35, 35B06, 35J15, 35J61, 35B53
Mots-clés : Stability, Cacciopoli inequality, De Giorgi's conjecture, Liouville type results, Flatness estimate, Symmetry
Nordmann, Samuel 1

1 School of Mathematical Sciences, Tel Aviv University, Israel
@article{AIHPC_2021__38_6_1869_0,
     author = {Nordmann, Samuel},
     title = {Non-existence of patterns and gradient estimates in semilinear elliptic equations with {Neumann} boundary conditions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1869--1895},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2021},
     doi = {10.1016/j.anihpc.2021.02.002},
     mrnumber = {4327900},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.002/}
}
TY  - JOUR
AU  - Nordmann, Samuel
TI  - Non-existence of patterns and gradient estimates in semilinear elliptic equations with Neumann boundary conditions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1869
EP  - 1895
VL  - 38
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.002/
DO  - 10.1016/j.anihpc.2021.02.002
LA  - en
ID  - AIHPC_2021__38_6_1869_0
ER  - 
%0 Journal Article
%A Nordmann, Samuel
%T Non-existence of patterns and gradient estimates in semilinear elliptic equations with Neumann boundary conditions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1869-1895
%V 38
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.002/
%R 10.1016/j.anihpc.2021.02.002
%G en
%F AIHPC_2021__38_6_1869_0
Nordmann, Samuel. Non-existence of patterns and gradient estimates in semilinear elliptic equations with Neumann boundary conditions. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1869-1895. doi : 10.1016/j.anihpc.2021.02.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.002/

[1] Alikakos, N.D.; Bates, P.W. On the singular limit in a phase field model of phase transitions, Ann. Inst. Henri Poincaré, Volume 5 (1988) no. 2 | Numdam | MR | Zbl

[2] Andrews, B.; Clutterbuck, J. Proof of the fundamental gap conjecture, J. Am. Math. Soc., Volume 24 (2010) no. 3 | DOI | MR | Zbl

[3] Arrieta, J.M.; Carvalho, A.N.; Lozada-Cruz, G. Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differ. Equ., Volume 231 (2006), pp. 551-597 | DOI | MR | Zbl

[4] Arrieta, J.M.; Carvalho, A.N.; Lozada-Cruz, G. Dynamics in dumbbell domains II. The limiting problem, J. Differ. Equ., Volume 247 (2009) no. 247, pp. 174-202 | DOI | MR | Zbl

[5] Arrieta, J.M.; Carvalho, A.N.; Lozada-Cruz, G. Dynamics in dumbbell domains III. Continuity of attractors, J. Differ. Equ., Volume 247 (2009) no. 247, pp. 225-259 | DOI | MR | Zbl

[6] Bandle, C.; Mastrolia, P.; Monticelli, D.; Punzo, F. On the stability of solutions of semilinear elliptic equations with Robin boundary conditions on Riemannian manifolds, SIAM J. Math. Anal., Volume 48 (2016) no. 1 | DOI | MR

[7] Bandle, C.; Punzo, F.; Tesei, A. Existence and nonexistence of patterns on Riemannian manifolds, J. Math. Anal. Appl., Volume 387 (2012) no. 1, pp. 33-47 | DOI | MR | Zbl

[8] Bareket, M.; Rulf, B. An eigenvalue problem related to sound propagation in elastic tubes, J. Sound Vib., Volume 38 (1975) no. 4, pp. 437-449 | DOI | Zbl

[9] Barlow, M.T.; Bass, R.F.; Gui, C. The Liouville property and a conjecture of De Giorgi, Commun. Pure Appl. Math., Volume 53 (2000) no. 8, pp. 1007-1038 | DOI | MR | Zbl

[10] Berestycki, H.; Bouhours, J.; Chapuisat, G. Front blocking and propagation in cylinders with varying cross section, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 3, p. 44 | DOI | MR

[11] Berestycki, H.; Caffarelli, L.; Nirenberg, L. Further qualitative properties for elliptic equations in unbounded domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 25 (1997) no. 1–2, pp. 69-94 | Numdam | MR | Zbl

[12] Berestycki, H.; Hamel, F.; Matano, H. Bistable travelling waves around an obstacle, Commun. Pure Appl. Math., Volume 62 (2009) no. 6, pp. 729-788 | DOI | MR | Zbl

[13] Berestycki, H.; Nirenberg, L. Travelling fronts in cylinders, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 9 (1992) no. 5, pp. 497-572 | DOI | Numdam | MR | Zbl

[14] J. Brasseur, J. Coville, A Counterexample to the Liouville Property of some nonlocal problems, arXiv preprint, 2018. | Numdam | MR

[15] Brasseur, J.; Coville, J.; Hamel, F.; Valdinoci, E. Liouville type results for a nonlocal obstacle problem, Proc. Lond. Math. Soc. ( feb 2019 ) | MR

[16] Brown, K.J.; Hess, P. Stability and uniqueness of positive solutions for a semi-linear elliptic boundary value problem, Differ. Integral Equ., Volume 3 (1990) no. 2, pp. 201-207 | MR | Zbl

[17] Cabré, X.; Figalli, A.; Ros-Oton, X.; Serra, J. Stable solutions to semilinear elliptic equations are smooth up to dimension 9, Acta Math., Volume 224 (2020) no. 2, pp. 187-252 | DOI | MR

[18] Caffarelli, L.A.; Córdoba, A. Phase transitions: uniform regularity of the intermediate layers, J. Reine Angew. Math., Volume 593 (2006), pp. 209-235 | MR | Zbl

[19] Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., Volume 28 ( feb 1958 ) no. 2, pp. 258-267 | DOI

[20] Casten, R.G.; Holland, C.J. Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differ. Equ., Volume 27 (1978) no. 2, pp. 266-273 | DOI | MR | Zbl

[21] Chanillo, S.; Cabré, X. Stable solutions of semilinear elliptic problems in convex domains, Sel. Math. New Ser., Volume 4 (1998) no. 1, pp. 1-9 | DOI | MR | Zbl

[22] Chen, M.-F.; Wang, F.-Y. Estimation of spectral gap for elliptic operators, Trans. Am. Math. Soc., Volume 349 (1997) no. 397, pp. 1239-1267 | DOI | MR | Zbl

[23] Chen, M.-F.; Wang, F.-Y. General formula for lower bound of the first eigenvalue on Riemannian manifolds, Sci. China Ser. A, Volume 40 (1997) no. 4 | MR | Zbl

[24] G. Ciraolo, R. Corso, A. Roncoroni, Classification and non-existence results for weak solutions to quasilinear elliptic equations with Neumann or Robin boundary conditions, arXiv preprint, 2020. | MR

[25] Cònsul, N.; Solà-Morales, J. Stability of local minima and stable nonconstant equilibria, J. Differ. Equ., Volume 157 ( sep 1999 ) no. 1, pp. 61-81 | DOI | MR | Zbl

[26] Dancer, E.N. Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion, Trans. Am. Math. Soc., Volume 357 (2004) no. 304, pp. 1225-1243 | DOI | MR | Zbl

[27] Dancer, E.N.; Daners, D. Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differ. Equ., Volume 138 (1997) | DOI | MR | Zbl

[28] Daners, D. Local singular variation of domain for semilinear elliptic equations, Topics in Nonlinear Analysis, Birkhäuser Basel, Basel, 1999, pp. 117-141 | DOI | MR | Zbl

[29] Daners, D. Domain perturbation for linear and semi-linear boundary value problems, Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 6(1), 2008, pp. 1-81 | MR | Zbl

[30] Daners, D. Principal eigenvalues for generalised indefinite Robin problems, Potential Anal., Volume 38 (2013), pp. 1047-1069 | MR | Zbl

[31] Dipierro, S.; Pinamonti, A.; Valdinoci, E. Classification of stable solutions for boundary value problems with nonlinear boundary conditions on Riemannian manifolds with nonnegative Ricci curvature, Adv. Nonlinear Anal., Volume 8 ( jun 2018 ) no. 1, pp. 1035-1042 | DOI | MR

[32] Dipierro, S.; Pinamonti, A.; Valdinoci, E. Rigidity results for elliptic boundary value problems: stable solutions for quasilinear equations with Neumann or Robin boundary conditions, Int. Math. Res. Not. (2018), pp. 1-16 | MR

[33] Dipierro, S.; Soave, N.; Valdinoci, E. On stable solutions of boundary reaction-diffusion equations and applications to nonlocal problems with Neumann data, Indiana Univ. Math. J., Volume 67 (2016) no. 1 | MR

[34] Do Nascimento, A.S.; Sônego, M.S. Patterns on surfaces of revolution in a diffusion problem with variable diffusivity, Electron. J. Differ. Equ., Volume 2014 (2014) no. 238 | MR

[35] Dupaigne, L. Stable Solutions of Elliptic Partial Differential Equations, Monographs & Surveys in Pure & Applied Math., Chapman and Hall/CRC, mar 2011 | DOI | MR | Zbl

[36] Farina, A.; Mari, L.; Valdinoci, E. Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds, Commun. Partial Differ. Equ., Volume 38 (2013) no. 10, pp. 1818-1862 | DOI | MR | Zbl

[37] Farina, A.; Sire, Y.; Valdinoci, E. Stable solutions of elliptic equations on Riemannian manifolds, J. Geom. Anal., Volume 23 (2013), pp. 1158-1172 | DOI | MR | Zbl

[38] Gazzola, F. The sharp exponent for a Liouville-type theorem for an elliptic inequality, Rend. Ist. Mat. Univ. Trieste, Volume 34 (2003) no. 1–2, pp. 99-102 | MR | Zbl

[39] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Vol. 1542, Springer-Verlag, Berlin, Heidelberg, 2001 | MR | Zbl

[40] Gokieli, M.; Varchon, N. Stability and instability of equilibria on singular domains, Bedlewo, Poland (Banach Center Publications), Volume vol. 86 (2009) | DOI | MR | Zbl

[41] Gonçalves, A.C.; Nascimento, A.S. Instability of elliptic equations on compact Riemannian manifolds with non-negative Ricci curvature, Electron. J. Differ. Equ., Volume 2010 (2010) no. 67 | MR | Zbl

[42] Hale, J.K. Eigenvalues and perturbed domains, 10 Mathematical Essays on Approximation in Analysis and Topology, 2005, pp. 95-123 | DOI | MR | Zbl

[43] Hale, J.K.; Vegas, J. A nonlinear parabolic equation with varying domain, Arch. Ration. Mech. Anal., Volume 86 (1984) no. 2, pp. 99-123 | DOI | MR | Zbl

[44] Henry, D. Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[45] Jimbo, S. On a semilinear diffusion equation on a Riemannian manifold and its stable equilibrium solutions, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 60 (1984) no. 10, pp. 349-352 | DOI | MR | Zbl

[46] Jimbo, S.; Morita, Y. Stability of nonconstant steady-state solutions to a Ginzburg–Landau equation in higher space dimensions, Nonlinear Anal., Theory Methods Appl., Volume 22 ( mar 1994 ) no. 6, pp. 753-770 | DOI | MR | Zbl

[47] Kohn, R.V.; Sternberg, P. Local minimisers and singular perturbations, Proc. R. Soc. Edinb. A, Volume 111 (1989) no. 1–2, pp. 69-84 | DOI | MR | Zbl

[48] Kovařík, H. On the lowest eigenvalue of Laplace operator with mixed boundary conditions, J. Geom. Anal., Volume 24 (2012) no. 3, pp. 1509-1525 | DOI | MR | Zbl

[49] Levitin, M.; Parnovski, L. On the principal eigenvalue of a Robin problem with a large parameter, Math. Nachr., Volume 281 (2008) no. 2, pp. 272-281 | DOI | MR | Zbl

[50] Matano, H. Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., Volume 15 (1979) no. 2, pp. 401-454 | DOI | MR | Zbl

[51] Modica, L. Convergence to minimal surfaces problem and global solutions of Delta u = 2(u3-u), Rome, 1978, Pitagora, Bologna (1979), pp. 223-244 | MR | Zbl

[52] Modica, L.; Mortola, S. Un esempio di Gamma-convergenza, Boll. Unione Mat. Ital., B, Volume 14 (1977), pp. 285-299 | MR | Zbl

[53] Moschini, L. New Liouville theorems for linear second order degenerate elliptic equations in divergence form, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 11-23 | DOI | Numdam | MR | Zbl

[54] Nordmann, S. Symmetry properties of stable solutions of semilinear elliptic equations in unbounded domains, Calc. Var. Partial Differ. Equ., Volume 60 (2021) | DOI | MR | Zbl

[55] Pacard, F.; Wei, J. Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones, J. Funct. Anal., Volume 264 ( mar 2013 ) no. 5, pp. 1131-1167 | DOI | MR | Zbl

[56] Punzo, F. The existence of patterns on surfaces of revolution without boundary, Nonlinear Anal., Theory Methods Appl., Volume 77 ( jan 2013 ), pp. 94-102 | DOI | MR | Zbl

[57] J. Rohleder, Strict inequality of Robin eigenvalues for elliptic differential operators on Lipschitz domains, arXiv preprint, 2014. | MR | Zbl

[58] L. Rossi, Stability analysis for semilinear parabolic problems in general unbounded domains, arXiv preprint, 2020. | MR

[59] Rubinstein, J.; Wolansky, G. Instability results for reaction diffusion equations over surfaces of revolutions, J. Math. Anal. Appl., Volume 187 ( oct 1994 ) no. 2, pp. 485-489 | DOI | MR | Zbl

[60] Savin, O. Phase transitions, minimal surfaces and a conjecture of De Giorgi, Ann. Math., Volume 169 (2009), pp. 41-78 | MR | Zbl

[61] A. Savo, Optimal eigenvalue estimates for the Robin Laplacian on Riemannian manifolds, arXiv preprint, 2019. | MR

[62] Sônego, M.S. Patterns in a balanced bistable equation with heterogeneous environments on surfaces of revolution, Differ. Equ. Appl., Volume 8 (2016) no. 4, pp. 521-533 | MR | Zbl

[63] Sônego, M.S. Existence of radially symmetric patterns for a diffusion problem with variable diffusivity, Electron. J. Qual. Theory Differ. Equ., Volume 64 (2017), pp. 1-10 | DOI | MR | Zbl

[64] Sternberg, P.; Zumbrun, K. A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., Volume 503 (1998), pp. 63-85 | MR | Zbl

[65] Sternberg, P.; Zumbrun, K. Connectivity of phase boundaries in strictly convex domains, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 375-400 | DOI | MR | Zbl

[66] Umezu, K. On eigenvalue problems with Robin type boundary conditions having indefinite coefficients, Appl. Anal., Volume 85 (2006) no. 11, pp. 1313-1325 | DOI | MR | Zbl

[67] S. Villegas, Sharp Liouville Theorems, arXiv preprint, 2020. | MR

[68] Wang, L.; Wei, J.; Yan, S. On Lin-Ni's conjecture in convex domains, Proc. Lond. Math. Soc., Volume 102 (2011) no. 6, pp. 1099-1126 | DOI | MR | Zbl

[69] Wei, J.; Chan, H. On De Giorgi's conjecture: recent progress and open problems, Sci. China Math., Volume 61 (2018) no. 11, pp. 1925-1946 | DOI | MR | Zbl

[70] Yanagida, E. Stability of stationary distributions in a space-dependent population growth process, J. Math. Biol., Volume 15 ( sep 1982 ) no. 1, pp. 37-50 | DOI | MR | Zbl

[71] Yanagida, E. Mini-maximizers for reaction-diffusion systems with skew-gradient structure, J. Differ. Equ., Volume 179 ( feb 2002 ) no. 1, pp. 311-335 | DOI | MR | Zbl

Cité par Sources :