Soap films hanging from a wire frame are studied in the framework of capillarity theory. Minimizers in the corresponding variational problem are known to consist of positive volume regions with boundaries of constant mean curvature/pressure, possibly connected by “collapsed” minimal surfaces. We prove here that collapsing only occurs if the mean curvature/pressure of the bulky regions is negative, and that, when this last property holds, the whole soap film lies in the convex hull of its boundary wire frame.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.005
Mots-clés : Convex hull property, Minimal surfaces, Constant mean curvature surfaces, Plateau's problem
@article{AIHPC_2021__38_6_1929_0, author = {King, Darren and Maggi, Francesco and Stuvard, Salvatore}, title = {Collapsing and the convex hull property in a soap film capillarity model}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1929--1941}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2021}, doi = {10.1016/j.anihpc.2021.02.005}, mrnumber = {4327902}, zbl = {1475.49046}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.005/} }
TY - JOUR AU - King, Darren AU - Maggi, Francesco AU - Stuvard, Salvatore TI - Collapsing and the convex hull property in a soap film capillarity model JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1929 EP - 1941 VL - 38 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.005/ DO - 10.1016/j.anihpc.2021.02.005 LA - en ID - AIHPC_2021__38_6_1929_0 ER -
%0 Journal Article %A King, Darren %A Maggi, Francesco %A Stuvard, Salvatore %T Collapsing and the convex hull property in a soap film capillarity model %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1929-1941 %V 38 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.005/ %R 10.1016/j.anihpc.2021.02.005 %G en %F AIHPC_2021__38_6_1929_0
King, Darren; Maggi, Francesco; Stuvard, Salvatore. Collapsing and the convex hull property in a soap film capillarity model. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1929-1941. doi : 10.1016/j.anihpc.2021.02.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.005/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000 (xviii+434 pp) | DOI | MR | Zbl
[2] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Am. Math. Soc., Volume 4 (1976) no. 165 (viii+199 pp) | MR | Zbl
[3] A direct approach to Plateau's problem, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2219-2240 (ISSN: 1435-9855) | DOI | MR | Zbl
[4] Existence and soap film regularity of solutions to Plateau's problem, Adv. Calc. Var., Volume 9 (2016) no. 4, pp. 357-394 (ISSN: 1864-8258) | DOI | MR | Zbl
[5] General methods of elliptic minimization, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4 (ISSN: 0944-2669) | DOI | MR | Zbl
[6] Plateau's problem as a singular limit of capillarity problems, Commun. Pure Appl. Math. (2020) | MR | Zbl
[7] Smoothness of collapsed regions in a capillarity model for soap films, 2020 (Preprint) | arXiv | MR | Zbl
[8] Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003 (xviii+628 pp) (ISBN: 0-387-95495-3) | DOI | MR | Zbl
[9] Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, 2012 | MR | Zbl
[10] Soap films with gravity and almost-minimal surfaces, Discrete Contin. Dyn. Syst., Volume 39 (2019) no. 12, pp. 6877-6912 | DOI | MR | Zbl
[11] Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983 (vii+272 pp) | MR | Zbl
[12] The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. Math. (2), Volume 103 (1976) no. 3, pp. 489-539 | DOI | MR | Zbl
Cité par Sources :