Collapsing and the convex hull property in a soap film capillarity model
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1929-1941.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Soap films hanging from a wire frame are studied in the framework of capillarity theory. Minimizers in the corresponding variational problem are known to consist of positive volume regions with boundaries of constant mean curvature/pressure, possibly connected by “collapsed” minimal surfaces. We prove here that collapsing only occurs if the mean curvature/pressure of the bulky regions is negative, and that, when this last property holds, the whole soap film lies in the convex hull of its boundary wire frame.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.005
Classification : 49Q05, 53A10, 49Q20
Mots-clés : Convex hull property, Minimal surfaces, Constant mean curvature surfaces, Plateau's problem
King, Darren 1 ; Maggi, Francesco 1 ; Stuvard, Salvatore 1

1 Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Stop C1200, Austin TX 78712-1202, USA
@article{AIHPC_2021__38_6_1929_0,
     author = {King, Darren and Maggi, Francesco and Stuvard, Salvatore},
     title = {Collapsing and the convex hull property in a soap film capillarity model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1929--1941},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2021},
     doi = {10.1016/j.anihpc.2021.02.005},
     mrnumber = {4327902},
     zbl = {1475.49046},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.005/}
}
TY  - JOUR
AU  - King, Darren
AU  - Maggi, Francesco
AU  - Stuvard, Salvatore
TI  - Collapsing and the convex hull property in a soap film capillarity model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1929
EP  - 1941
VL  - 38
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.005/
DO  - 10.1016/j.anihpc.2021.02.005
LA  - en
ID  - AIHPC_2021__38_6_1929_0
ER  - 
%0 Journal Article
%A King, Darren
%A Maggi, Francesco
%A Stuvard, Salvatore
%T Collapsing and the convex hull property in a soap film capillarity model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1929-1941
%V 38
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.005/
%R 10.1016/j.anihpc.2021.02.005
%G en
%F AIHPC_2021__38_6_1929_0
King, Darren; Maggi, Francesco; Stuvard, Salvatore. Collapsing and the convex hull property in a soap film capillarity model. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1929-1941. doi : 10.1016/j.anihpc.2021.02.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.005/

[1] Ambrosio, L.; Fusco, N.; Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000 (xviii+434 pp) | DOI | MR | Zbl

[2] Almgren, F.J. Jr. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Am. Math. Soc., Volume 4 (1976) no. 165 (viii+199 pp) | MR | Zbl

[3] De Lellis, C.; Ghiraldin, F.; Maggi, F. A direct approach to Plateau's problem, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2219-2240 (ISSN: 1435-9855) | DOI | MR | Zbl

[4] Harrison, J.; Pugh, H. Existence and soap film regularity of solutions to Plateau's problem, Adv. Calc. Var., Volume 9 (2016) no. 4, pp. 357-394 (ISSN: 1864-8258) | DOI | MR | Zbl

[5] Harrison, J.; Pugh, H. General methods of elliptic minimization, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4 (ISSN: 0944-2669) | DOI | MR | Zbl

[6] King, D.; Maggi, F.; Stuvard, S. Plateau's problem as a singular limit of capillarity problems, Commun. Pure Appl. Math. (2020) | MR | Zbl

[7] King, D.; Maggi, F.; Stuvard, S. Smoothness of collapsed regions in a capillarity model for soap films, 2020 (Preprint) | arXiv | MR | Zbl

[8] Lee, J.M. Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003 (xviii+628 pp) (ISBN: 0-387-95495-3) | DOI | MR | Zbl

[9] Maggi, F. Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, 2012 | MR | Zbl

[10] Maggi, F.; Scardicchio, A.; Stuvard, S. Soap films with gravity and almost-minimal surfaces, Discrete Contin. Dyn. Syst., Volume 39 (2019) no. 12, pp. 6877-6912 | DOI | MR | Zbl

[11] Simon, L. Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983 (vii+272 pp) | MR | Zbl

[12] Taylor, J.E. The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. Math. (2), Volume 103 (1976) no. 3, pp. 489-539 | DOI | MR | Zbl

Cité par Sources :