@article{ASENS_2003_4_36_5_647_0, author = {Bessis, David}, title = {The dual braid monoid}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {647--683}, publisher = {Elsevier}, volume = {Ser. 4, 36}, number = {5}, year = {2003}, doi = {10.1016/j.ansens.2003.01.001}, mrnumber = {2032983}, zbl = {1064.20039}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2003.01.001/} }
TY - JOUR AU - Bessis, David TI - The dual braid monoid JO - Annales scientifiques de l'École Normale Supérieure PY - 2003 SP - 647 EP - 683 VL - 36 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2003.01.001/ DO - 10.1016/j.ansens.2003.01.001 LA - en ID - ASENS_2003_4_36_5_647_0 ER -
Bessis, David. The dual braid monoid. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 5, pp. 647-683. doi : 10.1016/j.ansens.2003.01.001. http://archive.numdam.org/articles/10.1016/j.ansens.2003.01.001/
[1] Zariski theorems and diagrams for braid groups, Invent. Math. 145 (2001) 487-507. | MR | Zbl
,[2] Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2002) 287-310. | MR | Zbl
, , ,[3] A new approach to the word and conjugacy problem in the braid groups, Adv. Math. 139 (2) (1998) 322-353. | MR | Zbl
, , ,[4] Groupes et algèbres de Lie, Hermann, 1968, chapitres IV, V et VI. | MR
,[5] A partial order on the symmetric group and new K(π,1)'s for the braid groups, Adv. Math. 161 (2001) 20-40. | Zbl
,[6] A partial order on the orthogonal group, Comm. Algebra 30 (2002) 3749-3754. | MR | Zbl
, ,[7] K(π,1)'s for Artin groups of finite type, Geom. Dedicata 94 (2002) 225-250. | Zbl
, ,[8] Reduced words and a length function for G(e,1,n), Indag. Math. (N.S.) 8 (4) (1997) 453-469. | MR | Zbl
, ,[9] Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971) 57-61. | MR | Zbl
,[10] Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972) 245-271. | MR | Zbl
, ,[11] Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, in: Proceedings de la Semaine de Luminy “Représentations des groupes réductifs finis, Birkhäuser, 1996, pp. 73-139. | Zbl
, ,[12] Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998) 127-190. | MR | Zbl
, , ,[13] Conjugacy classes in the Weyl groups, Compositio Math. 25 (1972) 1-52. | Numdam | MR | Zbl
,[14] Charney R., Meier J., Whittlesey K., Bestvina's normal form complex and the homology of Garside groups, preprint, 2001.
[15] A normal form for a class of monoids including the singular braid monoids, J. Algebra 223 (2000) 256-282. | MR | Zbl
,[16] Groupes de Garside, Ann. Sci. Éc. Norm. Sup. (4) 35 (2002) 267-306. | Numdam | MR | Zbl
,[17] Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc. 79 (1999) 569-604. | MR | Zbl
, ,[18] Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273-302. | MR | Zbl
,[19] Action du groupe des tresses sur une catégorie, Invent. Math. 128 (1997) 159-175. | MR | Zbl
,[20] Y-systems and generalized associahedra, Ann. Math. (2003), submitted for publication. | MR | Zbl
, ,[21] The braid group and other groups, Quart. J. Math. Oxford, 2 Ser. 20 (1969) 235-254. | MR | Zbl
,[22] LOG groups and cyclically presented groups, J. Algebra 174 (1995) 118-131. | MR | Zbl
, ,[23] Positive presentations of the braid groups and the embedding problem, Math. Z. 240 (2002) 211-232. | MR | Zbl
, ,[24] A note on words in braid monoids, J. Algebra 215 (1999) 366-377. | MR | Zbl
,[25] Explicit presentations for the dual braid monoids, C. R. Math. Acad. Sci. Paris 334 (10) (2002) 843-848. | MR | Zbl
,[26] Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997) 195-222. | MR | Zbl
,[27] GAP - Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 1994.
et al. ,[28] Graphes planaires et présentations des groupes de tresses, Math. Z. 214 (1993) 477-490. | MR | Zbl
,[29] Invariants of finite reflection groups, Nagoya Math. J. 22 (1963) 57-64. | MR | Zbl
,[30] Regular elements of finite reflection groups, Invent. Math. 25 (1974) 159-198. | MR | Zbl
,Cité par Sources :