@article{ASENS_2004_4_37_3_449_0, author = {Dimca, Alexandru and Papadima, \c{S}tefan}, title = {Equivariant chain complexes, twisted homology and relative minimality of arrangements}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {449--467}, publisher = {Elsevier}, volume = {Ser. 4, 37}, number = {3}, year = {2004}, doi = {10.1016/j.ansens.2003.10.002}, mrnumber = {2060483}, zbl = {1059.32007}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2003.10.002/} }
TY - JOUR AU - Dimca, Alexandru AU - Papadima, Ştefan TI - Equivariant chain complexes, twisted homology and relative minimality of arrangements JO - Annales scientifiques de l'École Normale Supérieure PY - 2004 SP - 449 EP - 467 VL - 37 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2003.10.002/ DO - 10.1016/j.ansens.2003.10.002 LA - en ID - ASENS_2004_4_37_3_449_0 ER -
%0 Journal Article %A Dimca, Alexandru %A Papadima, Ştefan %T Equivariant chain complexes, twisted homology and relative minimality of arrangements %J Annales scientifiques de l'École Normale Supérieure %D 2004 %P 449-467 %V 37 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2003.10.002/ %R 10.1016/j.ansens.2003.10.002 %G en %F ASENS_2004_4_37_3_449_0
Dimca, Alexandru; Papadima, Ştefan. Equivariant chain complexes, twisted homology and relative minimality of arrangements. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 3, pp. 449-467. doi : 10.1016/j.ansens.2003.10.002. http://archive.numdam.org/articles/10.1016/j.ansens.2003.10.002/
[1] Cohomology and intersection cohomology of complex hyperplane arrangements, Adv. Math. 97 (1993) 231-266. | MR | Zbl
,[2] Nonresonance conditions for arrangements, Annales Institut Fourier 53 (2003) 1883-1896. | Numdam | MR | Zbl
, , ,[3] Arrangements and local systems, Math. Res. Lett. 7 (2000) 299-316. | MR | Zbl
, ,[4] On Milnor fibrations of arrangements, J. London Math. Soc. 51 (1995) 105-119. | MR | Zbl
, ,[5] The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv. 72 (1997) 285-315. | MR | Zbl
, ,[6] Homology of iterated semidirect products of free groups, J. Pure Appl. Algebra 126 (1998) 87-120. | MR | Zbl
, ,[7] Hypersurface complements, Alexander modules and monodromy, preprint , math.AG/0201291. | MR
, ,[8] Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements, Ann. Math. 158 (2003) 473-507. | MR | Zbl
, ,[9] Commutative Algebra with a View Toward Algebraic Geometry, in: Grad. Texts in Math., vol. 150, Springer-Verlag, New York, 1995. | MR | Zbl
,[10] The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985) 77-88. | MR | Zbl
, ,[11] Topological Stability of Smooth Mappings, in: Lecture Notes in Math., vol. 552, Springer-Verlag, Berlin, 1976. | MR | Zbl
, , , ,[12] Stratified Morse Theory, in: Ergebnisse, vol. 14, Springer-Verlag, New York, 1988. | MR | Zbl
, ,[13] Topology of Cn minus a finite number of affine hyperplanes in general position, J. Fac. Sci. Univ. Tokyo 22 (1975) 205-219. | MR | Zbl
,[14] Alexander Ideals of Links, in: Lecture Notes in Math., vol. 895, Springer-Verlag, Berlin, 1981. | MR | Zbl
,[15] A generalization of fiber-type arrangements and a new deformation method, Topology 37 (1998) 1135-1164. | MR | Zbl
, ,[16] Deformations of hypersolvable arrangements, Topology Appl. 118 (2002) 103-111. | MR | Zbl
, ,[17] On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math. 397 (1986) 103-114. | MR | Zbl
,[18] Homotopy groups of the complements to singular hypersurfaces II, Ann. Math. 139 (1994) 117-144. | MR | Zbl
,[19] Homology, in: Grundlehren, vol. 114, Springer-Verlag, Berlin, 1963. | MR | Zbl
,[20] Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980) 167-189. | MR | Zbl
, ,[21] Arrangements of Hyperplanes, in: Grundlehren, vol. 300, Springer-Verlag, Berlin, 1992. | MR | Zbl
, ,[22] Higher homotopy groups of complements of complex hyperplane arrangements, Adv. Math. 165 (2002) 71-100. | MR | Zbl
, ,[23] Morse theory, Milnor fibers and minimality of hyperplane arrangements, Proc. Amer. Math. Soc. 130 (2002) 2737-2743. | MR | Zbl
,[24] On the fundamental group of the complement of a complex hyperplane arrangement, available at , math.AG/9805056, DIMACS Tech. Report 94-13 (1994) 33-50.
,[25] Local systems over complements of hyperplanes and the Kac-Kazhdan condition for singular vectors, J. Pure Appl. Algebra 100 (1995) 93-102. | MR | Zbl
, , ,[26] Elements of Homotopy Theory, in: Grad. Texts in Math., vol. 61, Springer-Verlag, New York, 1978. | MR | Zbl
,Cité par Sources :