@article{ASENS_2006_4_39_2_301_0, author = {de Cornulier, Yves}, title = {Relative {Kazhdan} property}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {301--333}, publisher = {Elsevier}, volume = {Ser. 4, 39}, number = {2}, year = {2006}, doi = {10.1016/j.ansens.2005.12.006}, mrnumber = {2245534}, zbl = {1107.22001}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.006/} }
TY - JOUR AU - de Cornulier, Yves TI - Relative Kazhdan property JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 301 EP - 333 VL - 39 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.006/ DO - 10.1016/j.ansens.2005.12.006 LA - en ID - ASENS_2006_4_39_2_301_0 ER -
de Cornulier, Yves. Relative Kazhdan property. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 39 (2006) no. 2, pp. 301-333. doi : 10.1016/j.ansens.2005.12.006. http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.006/
[1] The Riemann-Lebesgue property for arbitrary locally compact groups, Duke Math. J. 43 (1976) 225-236. | MR | Zbl
, ,[2] Unbounded negative definite functions, Canad. J. Math. 33 (4) (1981) 862-871. | MR | Zbl
, ,[3] Kazhdan's Property (T), Forthcoming book, currently available at, http://name.math.univ-rennes1.fr/bachir.bekka/.
, , ,[4] On a variant of Kazhdan's Property (T) for subgroups of semisimple groups, Ann. Inst. Fourier 47 (4) (1997) 1065-1078. | Numdam | MR | Zbl
, ,[5] Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964) 111-164. | MR | Zbl
, ,[6] Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. 27 (1965) 55-151. | Numdam | MR | Zbl
, ,[7] Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999. | MR | Zbl
, ,[8] Buildings, Springer, Berlin, 1989. | MR | Zbl
,[9] Kazhdan constants for , J. Reine Angew. Math. 431 (1991) 36-67. | MR | Zbl
,[10] Groups with the Haagerup Property, Progress in Mathematics, vol. 197, Birkhäuser, Basel, 2001. | MR | Zbl
, , , , ,[11] Topological groups, in: , (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1143-1263. | MR | Zbl
,[12] Kazhdan and Haagerup Properties in algebraic groups over local fields, J. Lie Theory 16 (2006) 67-82. | MR | Zbl
,[13] de Cornulier Y., Strongly bounded groups and infinite powers of finite groups, Comm. Algebra, in press. | Zbl
[14] de Cornulier Y., On Haagerup and Kazhdan Properties, Thèse sciences, École Polytechnique Fédérale de Lausanne, No 3438 (2005).
[15] de Cornulier Y., Tessera R., Valette A., Isometric group actions on Hilbert spaces: growth of cocycles, Preprint No 3438, 2005.
[16] Delaroche C., Kirillov A., Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés (d'après Kajdan), Sém. Bourbaki, 20e année, 1967-1968, No 343, 1968. | Numdam | Zbl
[17] Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969. | MR | Zbl
,[18] Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier 24 (3) (1974) 171-217. | Numdam | MR | Zbl
, ,[19] Relative Property (T) and linear groups, arXiv, math.GR/0411527, Ann. Inst. Fourier, in press. | Numdam | MR | Zbl
,[20] A note on Borel's density theorem, Proc. Amer. Math. Soc. 55 (1976) 209-212. | MR | Zbl
,[21] The Novikov Conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci. 101 (2005) 243-268. | Numdam | MR | Zbl
, , ,[22] La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque, vol. 175, SMF, Paris, 1989. | Numdam | Zbl
, ,[23] On Property (T) for pairs of topological groups, Enseign. Math. (2) 51 (2005) 31-45. | MR | Zbl
,[24] Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. 1 (1967) 63-65. | MR | Zbl
,[25] Lafforgue V., Une remarque sur les fonctions conditionnellement de type négatif, C. R. Acad. Sci., in press. | Zbl
[26] Variants of Kazhdan's property for subgroups of semisimple groups, Israel J. Math. 66 (1989) 289-298. | MR | Zbl
, ,[27] Lubotzky A., Żuk A., On Property (τ), Forthcoming book, 2005.
[28] Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems 2 (3-4) (1982) 383-396. | MR | Zbl
,[29] Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin, 1991. | MR | Zbl
,[30] Reduced 1-cohomology of connected locally compact groups and applications, J. Lie Theory 16 (2006) 311-328. | MR | Zbl
,[31] Topological Transformation Groups, Interscience, New York, 1955. | MR | Zbl
, ,[32] Groups acting on CAT(0) cube complexes, Geom. Topology 1 (1997) 1-7. | MR | Zbl
, ,[33] On the notion of relative property (T) for inclusions of von Neumann algebras, J. Funct. Anal. 219 (2005) 469-483. | MR | Zbl
, ,[34] Strong rigidity of factors arising from malleable actions of w-rigid groups, II, math.OA/0407103, Invent. Math., in press. | MR | Zbl
,[35] Bounded generation and Kazhdan's property (T), Publ. Math. Inst. Hautes Études Sci. 90 (1999) 145-168. | Numdam | MR | Zbl
,[36] Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan's property (T), Trans. Amer. Math. Soc. 351 (1999) 3387-3412. | MR | Zbl
,[37] Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (1) (2000) 1-54. | MR | Zbl
,[38] Tessera R., Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces, Preprint, 2006. | MR
[39] Group pairs with property (T), from arithmetic lattices, Geom. Dedicata 112 (1) (2005) 183-196. | MR | Zbl
,[40] On the Mautner phenomenon and groups with property (T), Amer. J. Math. 104 (6) (1982) 1191-1210. | MR | Zbl
,Cited by Sources: