@article{ASENS_2006_4_39_4_569_0, author = {Ge, Yuxin and Wang, Guofang}, title = {On a fully nonlinear {Yamabe} problem}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {569--598}, publisher = {Elsevier}, volume = {Ser. 4, 39}, number = {4}, year = {2006}, doi = {10.1016/j.ansens.2005.12.007}, mrnumber = {2290138}, zbl = {05125020}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.007/} }
TY - JOUR AU - Ge, Yuxin AU - Wang, Guofang TI - On a fully nonlinear Yamabe problem JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 569 EP - 598 VL - 39 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.007/ DO - 10.1016/j.ansens.2005.12.007 LA - en ID - ASENS_2006_4_39_4_569_0 ER -
%0 Journal Article %A Ge, Yuxin %A Wang, Guofang %T On a fully nonlinear Yamabe problem %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 569-598 %V 39 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.007/ %R 10.1016/j.ansens.2005.12.007 %G en %F ASENS_2006_4_39_4_569_0
Ge, Yuxin; Wang, Guofang. On a fully nonlinear Yamabe problem. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 4, pp. 569-598. doi : 10.1016/j.ansens.2005.12.007. http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.007/
[1] Monotone quantities and unique limits for evolving convex hypersurfaces, Internat. Math. Res. Notices 1997 (1997) 1001-1031. | MR | Zbl
,[2] Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976) 269-296. | MR | Zbl
,[3] On the best Sobolev inequality, J. Math. Pures Appl. 78 (1999) 353-387. | MR | Zbl
, ,[4] A variational characterization for , Calc. Var. Partial Differential Equations 20 (2004) 399-402. | MR | Zbl
, ,[5] The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985) 261-301. | MR | Zbl
, , ,[6] An equation of Monge-Ampère type in conformal geometry, and four manifolds of positive Ricci curvature, Ann. of Math. 155 (2002) 709-787. | MR | Zbl
, , ,[7] An a priori estimate for a fully nonlinear equation on Four-manifolds, J. Anal. Math. 87 (2002) 151-186. | MR | Zbl
, , ,[8] Entire solutions of a fully nonlinear equation, in: Lectures on Partial Differential Equations, New Stud. Adv. Math., vol. 2, Int. Press, Somerville, MA, 2003, pp. 43-60. | MR | Zbl
, , ,[9] On a real Monge-Ampère functional (K.S. Tso), Invent. Math. 101 (1990) 425-448. | EuDML | MR | Zbl
,[10] A variational theory of the Hessian equation, Comm. Pure Appl. Math. 54 (2001) 1029-1064. | MR | Zbl
, ,[11] An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959) 957-965. | MR | Zbl
,[12] Ge Y., Wang G., On a conformal quotient equation, in preparation.
[13] González M. d. M., Removability of singularities for a class of fully non-linear elliptic equations Preprint, 2004. | MR
[14] The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980) 423-434. | MR | Zbl
, ,[15] Schouten tensor and some topological properties, Comm. Anal. Geom. 13 (2005) 845-860. | MR | Zbl
, , ,[16] Guan P., Lin C.-S., Wang G., Local gradient estimates for conformal quotient equations, Preprint.
[17] Some properties of the Schouten tensor and applications to conformal geometry, Trans. Amer. Math. Soc. 355 (2003) 925-933. | MR | Zbl
, , ,[18] Local estimates for a class of fully nonlinear equations arising from conformal geometry, Int. Math. Res. Not. 2003 (2003) 1413-1432. | MR | Zbl
, ,[19] A fully nonlinear conformal flow on locally conformally flat manifolds, J. reine angew. Math. 557 (2003) 219-238. | MR | Zbl
, ,[20] Geometric inequalities on locally conformally flat manifolds, Duke Math. J. 124 (2004) 177-212. | MR | Zbl
, ,[21] A fully nonlinear conformal flow on locally conformally flat manifolds, math.DG/0112256, v1 of [19].
, ,[22] Volume comparison and the -Yamabe problem, Adv. in Math. 187 (2004) 447-487. | MR | Zbl
, ,[23] A fully nonlinear equation on 4-manifolds with positive scalar curvature, J. Differential Geom. 63 (2003) 131-154. | MR | Zbl
, ,[24] Prescribing symmetric functions of the eigenvalues of the Ricci tensor, Ann of Math., submitted for publication, math.DG/0409187.
, ,[25] Riemannian Metrics of Constant Mass and Moduli Spaces of Conformal Structures, Lecture Notes in Mathematics, vol. 1743, Springer, Berlin, 2000. | MR | Zbl
,[26] Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Math., vol. 5, Courant Inst. of Math. Sci./Amer. Math. Soc., New York/Providence, RI, 1999. | MR | Zbl
,[27] Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel, Dordrecht, 1987. | MR | Zbl
,[28] The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987) 37-91. | MR | Zbl
, ,[29] On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math. 56 (2003) 1416-1464. | MR | Zbl
, ,[30] Two remarks on the Monge-Ampère, Ann. Mat. Pura Appl. 142 (1985) 263-275. | MR | Zbl
,[31] Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993) 649-672. | MR | Zbl
, ,[32] Conformal deformation of a Riemannian metric to constant curvature, J. Differential Geom. 20 (1984) 479-495. | MR | Zbl
,[33] Positive Ricci curvature on the connected sums of , J. Differential Geom. 33 (1991) 127-137. | MR | Zbl
, ,[34] The Yamabe problem for higher order curvatures, math.DG/0505463.
, , ,[35] Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. 118 (1983) 525-571. | MR | Zbl
,[36] On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967) 473-483. | MR | Zbl
,[37] A Poincaré type inequality for Hessian integrals, Calc. Var. Partial Differential Equations 6 (4) (1998) 315-328. | MR | Zbl
, ,[38] Conformal geometry, contact geometry and the calculus of variations, Duke J. Math. 101 (2) (2000) 283-316. | MR | Zbl
,[39] Conformally invariant Monge-Ampère equations: Global solutions, Trans. Amer. Math. Soc. 352 (2000) 4371-4379. | MR | Zbl
,[40] Estimates and some existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom. 10 (2002) 815-847. | MR | Zbl
,[41] A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J. 43 (1994) 25-54. | MR | Zbl
,[42] On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960) 21-37. | MR | Zbl
,Cité par Sources :