Existence of unique SRB-measures is typical for real unicritical polynomial families
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 3, pp. 381-414.
@article{ASENS_2006_4_39_3_381_0,
     author = {Bruin, Henk and Shen, Weixiao and Van Strien, Sebastian},
     title = {Existence of unique {SRB-measures} is typical for real unicritical polynomial families},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {381--414},
     publisher = {Elsevier},
     volume = {Ser. 4, 39},
     number = {3},
     year = {2006},
     doi = {10.1016/j.ansens.2006.02.001},
     mrnumber = {2265674},
     zbl = {05078689},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.ansens.2006.02.001/}
}
TY  - JOUR
AU  - Bruin, Henk
AU  - Shen, Weixiao
AU  - Van Strien, Sebastian
TI  - Existence of unique SRB-measures is typical for real unicritical polynomial families
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2006
SP  - 381
EP  - 414
VL  - 39
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.ansens.2006.02.001/
DO  - 10.1016/j.ansens.2006.02.001
LA  - en
ID  - ASENS_2006_4_39_3_381_0
ER  - 
%0 Journal Article
%A Bruin, Henk
%A Shen, Weixiao
%A Van Strien, Sebastian
%T Existence of unique SRB-measures is typical for real unicritical polynomial families
%J Annales scientifiques de l'École Normale Supérieure
%D 2006
%P 381-414
%V 39
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.ansens.2006.02.001/
%R 10.1016/j.ansens.2006.02.001
%G en
%F ASENS_2006_4_39_3_381_0
Bruin, Henk; Shen, Weixiao; Van Strien, Sebastian. Existence of unique SRB-measures is typical for real unicritical polynomial families. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 3, pp. 381-414. doi : 10.1016/j.ansens.2006.02.001. http://archive.numdam.org/articles/10.1016/j.ansens.2006.02.001/

[1] Ahlfors L., Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966. | MR | Zbl

[2] Avila A., Lyubich M., De Melo W., Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math. 154 (2003) 451-550. | MR | Zbl

[3] Avila A., Moreira C.G., Statistical properties of unimodal maps: The quadratic family, Ann. of Math. 161 (2005) 831-881. | MR | Zbl

[4] Birkhoff G., Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc. 85 (1957) 219-227. | MR | Zbl

[5] Blokh A., Lyubich M., Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup. 24 (1991) 737-749. | Numdam | MR | Zbl

[6] Bruin H., Minimal Cantor systems and unimodal maps, J. Difference Eq. Appl. 9 (2003) 305-318. | MR | Zbl

[7] Bruin H., Topological conditions for the existence of Cantor attractors, Trans. Amer. Math. Soc. 350 (1998) 2229-2263. | MR | Zbl

[8] Bruin H., Luzzatto S., Van Strien S., Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup. 36 (2003) 621-646. | Numdam | MR | Zbl

[9] Bruin H., Keller G., Nowicki T., Van Strien S., Wild Cantor attractors exist, Ann. of Math. 143 (1996) 97-130. | MR | Zbl

[10] Bruin H., Shen W., Van Strien S., Invariant measures exist without a growth condition, Commun. Math. Phys. 241 (2-3) (2003) 287-306. | MR | Zbl

[11] Douady A., Hubbard J., Dynamical study of complex polynomials, Part I and Part II, Mathematical Publications of Orsay 84-2, 85-4 (in French).

[12] Douady A., Hubbard J., On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (2) (1985) 287-343. | Numdam | MR | Zbl

[13] Durand F., Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Syst. 20 (2000) 1061-1078. | MR | Zbl

[14] Graczyk J., Świa̧Tek G., Induced expansion for quadratic polynomials, Ann. Sci École Norm. Súp. 29 (1996) 399-482. | Numdam

[15] Hasselblatt B., Katok A., A First Course in Dynamics, with a Panorama of Recent Developments, Cambridge University Press, Cambridge, 2003. | MR | Zbl

[16] Hofbauer F., Keller G., Some remarks on recent results about S-unimodal maps, Ann. Inst. Henri Poincaré 53 (1990) 413-425. | Numdam | MR | Zbl

[17] Kahn J., Holomorphic removability of Julia sets, IMS preprint ims98-11.

[18] Kozlovski O., Getting rid of the negative Schwarzian derivative condition, Ann. of Math. 152 (2000) 743-762. | MR | Zbl

[19] Kozlovski O., Shen W., van Strien S., Rigidity for real polynomials, Ann. of Math., in press.

[20] Kozlovski O., Shen W., van Strien S., Density of Axiom A in dimension one, Ann. of Math., in press.

[21] Lyubich M., Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. 140 (1994) 347-404, and Erratum Manuscript (2000). | MR | Zbl

[22] Lyubich M., Dynamics of quadratic polynomials. III. Parapuzzle and SRB measures, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. xii-xiii, 173-200. | MR | Zbl

[23] Lyubich M., Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture, Ann. of Math. 149 (2) (1999) 319-420. | MR | Zbl

[24] Lyubich M., Almost every real quadratic map is either regular or stochastic, Ann. of Math. 156 (2002) 1-78. | MR | Zbl

[25] Mcmullen C., Complex Dynamics and Renormalization, Ann. of Math Stud., vol. 135, 1994. | MR | Zbl

[26] Mañé R., Ergodic Theory and Differentiable Dynamics, Springer, New York, 1987. | MR | Zbl

[27] Martens M., Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Syst. 14 (2) (1994) 331-349. | MR | Zbl

[28] Martens M., Nowicki T., Invariant measures for typical quadratic maps, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. 239-252. | Numdam | MR | Zbl

[29] De Melo W., Van Strien S., One-Dimensional Dynamics, Springer, Berlin, 1993. | MR | Zbl

[30] Milnor J., Periodic orbits, externals rays and the Mandelbrot set: An expository account, in: Géométrie complexe et systèmes dynamiques, Orsay, 1995, Astérisque, vol. 261, 2000, pp. xiii, 277-333. | Numdam | MR | Zbl

[31] Nowicki T., Van Strien S., Invariant measures exist under a summability condition, Invent. Math. 105 (1991) 123-136. | MR | Zbl

[32] Rivera-Letelier J., Rational maps with decay of geometry: Rigidity, Thurston's algorithm and local connectivity, IMS preprint ims00-09.

[33] Roesch P., Holomorphic motions and puzzles (following M. Shishikura), in: The Mandelbrot set theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge University Press, Cambridge, 2000, pp. 117-131. | MR | Zbl

[34] Shen W., Bounds for one-dimensional maps without inflection critical points, J. Math. Sci. Univ. Tokyo 10 (1) (2003) 41-88. | MR | Zbl

[35] Shen W., Decay geometry for unimodal maps: an elementary proof, Ann. of Math. (2) 163 (2) (2006) 383-404. | MR | Zbl

[36] Shishikura M., Yoccoz puzzles, τ-functions and their applications, Unpublished.

[37] Slodkowski Z., Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (2) (1991) 347-355. | MR | Zbl

[38] Van Strien S., Vargas E., Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc. 17 (2004) 749-782. | MR | Zbl

[39] Yoccoz J.-C., Unpublished.

Cité par Sources :