@article{ASENS_2007_4_40_1_113_0, author = {Kapranov, Mikhail and Vasserot, \'Eric}, title = {Formal loops {II} : a local {Riemann-Roch} theorem for determinantal gerbes}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {113--133}, publisher = {Elsevier}, volume = {Ser. 4, 40}, number = {1}, year = {2007}, doi = {10.1016/j.ansens.2006.12.003}, zbl = {1129.14022}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2006.12.003/} }
TY - JOUR AU - Kapranov, Mikhail AU - Vasserot, Éric TI - Formal loops II : a local Riemann-Roch theorem for determinantal gerbes JO - Annales scientifiques de l'École Normale Supérieure PY - 2007 SP - 113 EP - 133 VL - 40 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2006.12.003/ DO - 10.1016/j.ansens.2006.12.003 LA - en ID - ASENS_2007_4_40_1_113_0 ER -
%0 Journal Article %A Kapranov, Mikhail %A Vasserot, Éric %T Formal loops II : a local Riemann-Roch theorem for determinantal gerbes %J Annales scientifiques de l'École Normale Supérieure %D 2007 %P 113-133 %V 40 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2006.12.003/ %R 10.1016/j.ansens.2006.12.003 %G en %F ASENS_2007_4_40_1_113_0
Kapranov, Mikhail; Vasserot, Éric. Formal loops II : a local Riemann-Roch theorem for determinantal gerbes. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 1, pp. 113-133. doi : 10.1016/j.ansens.2006.12.003. http://archive.numdam.org/articles/10.1016/j.ansens.2006.12.003/
[1] The infinite wedge representation and the reciprocity law for algebraic curves, Part 1, in: Proc. Sympos. Pure Math., vol. 49, Amer. Math. Soc., Providence, RI, 1989, pp. 171-190. | MR | Zbl
, , ,[2] Simple proofs of classical explicit reciprocity laws on curves using determinantal groupoids over an artinian local ring, Comm. Algebra 32 (2004) 79-102. | MR | Zbl
, ,[3] and algebraic cycles, Ann. of Math. 99 (1974) 349-379. | MR | Zbl
,[4] Bressler P., Kapranov M., Tsygan B., Vasserot É., Riemann-Roch for real varieties, in preparation.
[5] Néron Models, Springer-Verlag, Berlin/New York, 1990. | MR | Zbl
, , ,[6] On the classification of 2-gerbes and 2-stacks, Astérisque 225 (1994). | Numdam | MR | Zbl
,[7] Central extensions of reductive groups by , Publ. Math. IHÉS 94 (2001) 5-85. | Numdam | MR | Zbl
, ,[8] Jacobienne locale, groupe de bivecteurs de Witt universel et symbole modéré, C. R. Acad. Sci. Paris, Série I 318 (1994) 743-746. | MR | Zbl
,[9] Le déterminant de la cohomologie, Contemp. Math. 67 (1987) 93-177. | MR | Zbl
,[10] Le symbole modéré, Publ. Math. IHÉS 73 (1991) 147-181. | Numdam | MR | Zbl
,[11] Infinite-dimensional vector bundles in algebraic geometry (an introduction), math.AG/0309155.
,[12] Milnor K-theory of rings, higher Chow groups and applications, Invent. Math. 148 (2002) 177-206. | MR | Zbl
, ,[13] Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40 (1981) 203-289.
,[14] Explicit construction of characteristic classes, in: Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 169-210. | MR | Zbl
,[15] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999) 201-232. | MR | Zbl
, ,[16] Gerbes of chiral differential operators, Math. Res. Lett. 7 (2000) 55-66. | MR | Zbl
, , ,[17] Gerbes of chiral differential operators. II. Vertex algebroids, Invent. Math. 155 (2004) 605-680. | MR | Zbl
, , ,[18] Infinite-dimensional algebraic geometry: algebraic structures on p-adic groups and their homogeneous spaces, Tohoku Math. J. 57 (2005) 65-117. | MR | Zbl
,[19] Vertex Algebras for Beginners, University Lecture Series, vol. 10, Amer. Math. Soc., Providence, RI, 1996. | MR | Zbl
,[20] Vertex algebras and the formal loop space, Publ. Math. IHÉS 100 (2004) 209-269. | Numdam | MR | Zbl
, ,[21] Kapranov M., Vasserot É., Formal loops III: Chiral differential operators, in preparation.
[22] Kac-Moody Groups, Their Flag Varieties and Representation Theory, Progress in Math., vol. 204, Birkhäuser, Basel, 2002. | Zbl
,[23] Champs algébriques, A Series of Modern Surveys in Mathematics, vol. 39, Springer-Verlag, Berlin/New York, 2000. | MR
, ,[24] Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. 2 (1969) 1-62. | Numdam | MR | Zbl
,[25] Group extensions of p-adic and adelic linear groups, Publ. Math. IHÉS 35 (1968) 157-222. | Numdam | MR | Zbl
,[26] Chiral de Rham complex, Comm. Math. Phys. 204 (1999) 439-473. | MR | Zbl
, , ,[27] Loop Groups, Oxford Univ. Press, London, 1986. | MR | Zbl
, ,[28] Algebraic K-theory, Birkhäuser, Basel, 1996. | MR | Zbl
,[29] The of rings with many units, Ann. Sci. École Norm. Sup. 10 (1977) 473-515. | Numdam | MR | Zbl
,Cité par Sources :