Analytic sheaves in Banach spaces
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 3, pp. 453-486.
@article{ASENS_2007_4_40_3_453_0,
     author = {Lempert, L\'aszl\'o and Patyi, Imre},
     title = {Analytic sheaves in {Banach} spaces},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {453--486},
     publisher = {Elsevier},
     volume = {Ser. 4, 40},
     number = {3},
     year = {2007},
     doi = {10.1016/j.ansens.2006.12.006},
     zbl = {1135.32008},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.ansens.2006.12.006/}
}
TY  - JOUR
AU  - Lempert, László
AU  - Patyi, Imre
TI  - Analytic sheaves in Banach spaces
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2007
SP  - 453
EP  - 486
VL  - 40
IS  - 3
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.ansens.2006.12.006/
DO  - 10.1016/j.ansens.2006.12.006
LA  - en
ID  - ASENS_2007_4_40_3_453_0
ER  - 
%0 Journal Article
%A Lempert, László
%A Patyi, Imre
%T Analytic sheaves in Banach spaces
%J Annales scientifiques de l'École Normale Supérieure
%D 2007
%P 453-486
%V 40
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2006.12.006/
%R 10.1016/j.ansens.2006.12.006
%G en
%F ASENS_2007_4_40_3_453_0
Lempert, László; Patyi, Imre. Analytic sheaves in Banach spaces. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 3, pp. 453-486. doi : 10.1016/j.ansens.2006.12.006. https://www.numdam.org/articles/10.1016/j.ansens.2006.12.006/

[1] Bishop E., Analytic functions with values in a Fréchet space, Pacific J. Math. 12 (1962) 1177-1192. | MR | Zbl

[2] Bredon G.E., Sheaf Theory, second ed., Springer, New York, 1997. | MR | Zbl

[3] Bungart L., Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans Amer. Math. Soc. 111 (1964) 317-344. | MR | Zbl

[4] Cartan H., Séminaire École Norm. Sup. 4, Fonctions analytiques de plusieurs variables complexes, Paris, 1951-52.

[5] Dineen S., Bounding subsets of a Banach space, Math. Ann. 192 (1971) 61-70. | MR | Zbl

[6] Docquier F., Grauert H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960) 94-123. | MR | Zbl

[7] Douady A., Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966) 1-95. | Numdam | MR | Zbl

[8] Douady A., A remark on Banach analytic spaces, in: Symposium on Infinite-Dimensional Topology, Baton Rouge, LA, 1967, Ann. of Math. Studies, vol. 69, Princeton Univ. Press, Princeton, NJ, 1972, pp. 41-42. | MR | Zbl

[9] Griffiths P., Adams J., Topics in Algebraic and Analytic Geometry, Mathematical Notes, Princeton Univ. Press, Princeton, NJ, 1974. | MR | Zbl

[10] Josefson B., Bounding subsets of lA, J. Math. Pures Appl. 57 (1978) 397-421. | MR | Zbl

[11] Josefson B., Approximations of holomorphic functions in certain Banach spaces, Internat. J. Math. 15 (2004) 467-471. | MR | Zbl

[12] Kelly G.M., Basic Concepts of Enriched Category Theory, Cambridge Univ. Press, Cambridge, 1982. | MR | Zbl

[13] Leiterer J., Banach coherent analytic Fréchet sheaves, Math. Nachr. 85 (1978) 91-109. | MR | Zbl

[14] Lempert L., The Dolbeault complex in infinite dimensions I, J. Amer. Math. Soc. 11 (1998) 485-520. | MR | Zbl

[15] Lempert L., Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier (Grenoble) 49 (1999) 1293-1304. | Numdam | MR | Zbl

[16] Lempert L., Approximation of holomorphic functions of infinitely many variables II, Ann. Inst. Fourier (Grenoble) 50 (2000) 423-442. | Numdam | MR | Zbl

[17] Lempert L., The Dolbeault complex in infinite dimensions III, Invent. Math. 142 (2000) 579-603. | MR | Zbl

[18] Lempert L., Plurisubharmonic domination, J. Amer. Math. Soc. 17 (2004) 361-372. | MR | Zbl

[19] Lempert L., Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math. 8 (2004) 65-86. | MR | Zbl

[20] Meylan F., Approximation of holomorphic functions in Banach spaces admitting a Schauder decomposition, Ann. Scuola Norm. Sup. Pisa (2006). | Numdam | MR

[21] Mujica J., Complex Analysis in Banach Spaces, North-Holland, Amsterdam, 1986. | MR | Zbl

[22] Patyi I., On the ¯ equation in a Banach space, Bull. Soc. Math. France 128 (2000) 391-406. | Numdam | MR | Zbl

[23] Patyi I., On the Oka principle in a Banach space, I, Math. Ann. 326 (2003) 417-441. | MR | Zbl

[24] Patyi I., On the Oka principle in a Banach space, II, Math. Ann. 326 (2003) 443-458. | MR | Zbl

[25] Patyi I., Cohomological characterization of pseudoconvexity in a Banach space, Math. Z. 245 (2003) 371-386. | MR | Zbl

[26] Patyi I., Analytic cohomology of complete intersections in a Banach space, Ann. Inst. Fourier (Grenoble) 54 (2004) 147-158. | Numdam | MR | Zbl

[27] Patyi I., On holomorphic Banach vector bundles over Banach spaces, manuscript, math.CV/0509557.

[28] Patyi I., An analytic Koszul complex in a Banach space, manuscript, math.CV/0509556.

[29] Patyi I., Analytic cohomology in a Banach space, manuscript, math.CV/0507520.

[30] Pestov V., Analytic subsets of Hilbert spaces, in: Fruchard A., Troesch A. (Eds.), Actes du colloque trajectorien, IRMA, Strasbourg, 1995, pp. 75-80. | MR

[31] Ramis J.P., Sous-ensembles analytiques d'une variété banachique complexe, Springer, Berlin-New York, 1970. | Zbl

[32] Serre J.-P., Faisceaux algébriques cohérents, Ann. Math. 61 (1955) 197-278. | MR | Zbl

[33] Singer I., Bases in Banach Spaces, I-II, Springer, Berlin, 1981. | Zbl

[34] Siu Y.T., Every Stein variety admits a Stein neighborhood, Invent. Math. 38 (1976/77) 89-100. | MR | Zbl

  • Lempert, László Aron–Berner–type extension in complex Banach manifolds, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/9092
  • Patyi, Imre The Grauert–Oka principle in a Banach space, Journal of Mathematical Analysis and Applications, Volume 495 (2021) no. 1, p. 124711 | DOI:10.1016/j.jmaa.2020.124711
  • Zerhusen, Aaron Holomorphic automorphisms of complex Banach spaces, Periodica Mathematica Hungarica, Volume 77 (2018) no. 1, p. 27 | DOI:10.1007/s10998-017-0218-8
  • Lempert, László Analytic cohomology groups of infinite dimensional complex manifolds, Journal of Mathematical Analysis and Applications, Volume 445 (2017) no. 2, p. 1428 | DOI:10.1016/j.jmaa.2015.12.023
  • Lempert, László Representing Analytic Cohomology Groups of Complex Manifolds, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 24 (2015) no. 1, p. 21 | DOI:10.5802/afst.1440
  • Patyi, Imre On holomorphic domination, II, Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, p. 501 | DOI:10.1016/j.crma.2015.04.001
  • Patyi, Imre On Runge approximation in a Banach space, Journal of Mathematical Analysis and Applications, Volume 413 (2014) no. 1, p. 532 | DOI:10.1016/j.jmaa.2013.12.017
  • Dineen, Seán; Mujica, Jorge The approximation property for spaces of holomorphic functions on infinite dimensional spaces III, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, Volume 106 (2012) no. 2, p. 457 | DOI:10.1007/s13398-012-0065-7
  • Patyi, Imre Plurisubharmonic domination in Banach spaces, Advances in Mathematics, Volume 227 (2011) no. 1, p. 245 | DOI:10.1016/j.aim.2011.01.025
  • Masagutov, Vakhid Homomorphisms of infinitely generated analytic sheaves, Arkiv för Matematik, Volume 49 (2011) no. 1, p. 129 | DOI:10.1007/s11512-010-0129-x
  • Patyi, Imre On holomorphic domination, I, Bulletin des Sciences Mathématiques, Volume 135 (2011) no. 3, p. 303 | DOI:10.1016/j.bulsci.2010.11.003
  • Mujica, Jorge; Zerhusen, Aaron Open sets with the Runge property in Banach spaces, Journal of Mathematical Analysis and Applications, Volume 377 (2011) no. 1, p. 384 | DOI:10.1016/j.jmaa.2010.11.016
  • Lempert, László Coherent Sheaves and Cohesive Sheaves, Complex Analysis (2010), p. 227 | DOI:10.1007/978-3-0346-0009-5_14
  • Patyi, Imre On complex Banach manifolds similar to Stein manifolds, Comptes Rendus. Mathématique, Volume 349 (2010) no. 1-2, p. 43 | DOI:10.1016/j.crma.2010.11.020
  • PATYI, IMRE ON THE ANNIHILATOR OF A DOLBEAULT GROUP, International Journal of Mathematics, Volume 21 (2010) no. 03, p. 317 | DOI:10.1142/s0129167x10006045
  • Patyi, Imre A converse to the Oka principle over certain complex Banach manifolds, Bulletin des Sciences Mathématiques, Volume 133 (2009) no. 5, p. 484 | DOI:10.1016/j.bulsci.2008.10.004
  • Patyi, Imre On normal crossings in a Banach space, Journal of Mathematical Analysis and Applications, Volume 356 (2009) no. 1, p. 211 | DOI:10.1016/j.jmaa.2009.03.009
  • Lempert, László On the cohomology groups of holomorphic Banach bundles, Transactions of the American Mathematical Society, Volume 361 (2009) no. 8, p. 4013 | DOI:10.1090/s0002-9947-09-04835-1
  • Patyi, Imre On holomorphic Banach vector bundles over Banach spaces, Mathematische Annalen, Volume 341 (2008) no. 2, p. 455 | DOI:10.1007/s00208-007-0199-7
  • Lempert, László A note on holomorphic approximation in Banach spaces, Periodica Mathematica Hungarica, Volume 56 (2008) no. 2, p. 241 | DOI:10.1007/s10998-008-6241-y

Cité par 20 documents. Sources : Crossref