Dans cette Note, nous présentons une méthode simple et générale pour fabriquer des familles de contractions pour des équations aux dérivées partielles non linéaires, d'évolution, ou bien stationnaires. À titre d'exemple, cette méthode est appliquée à l'équation des milieux poreux, pour laquelle nous obtenons de nouvelles contractions. Cette méthode ouvre de nouvelles voies de recherche à explorer.
In this Note, we present a general and fairly simple method to design families of contractions for nonlinear partial differential equations, either of evolution type, or of stationary type. As a particular example, we apply this method to the porous medium equation, for which we get new contractions. This method opens new directions to explore.
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_143_0, author = {Monneau, R\'egis}, title = {The method of differential contractions}, journal = {Comptes Rendus. Math\'ematique}, pages = {143--147}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.08.020}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.08.020/} }
TY - JOUR AU - Monneau, Régis TI - The method of differential contractions JO - Comptes Rendus. Mathématique PY - 2015 SP - 143 EP - 147 VL - 353 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2014.08.020/ DO - 10.1016/j.crma.2014.08.020 LA - en ID - CRMATH_2015__353_2_143_0 ER -
Monneau, Régis. The method of differential contractions. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 143-147. doi : 10.1016/j.crma.2014.08.020. http://archive.numdam.org/articles/10.1016/j.crma.2014.08.020/
[1] A semilinear equation in , Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 2 (1975) no. 4, pp. 523-555
[2] Entropy dissipation methods for degenerate parabolic problems and generalized sobolev inequalities, Monatshefte Math., Volume 133 (2001), pp. 1-82
[3] Study of the porous medium equation and of a blister model, École des ponts ParisTech, Paris, 2014 (PhD thesis)
[4] G. Chmaycem, M. Jazar, R. Monneau, A new contraction family for porous medium and fast diffusion equations, in preparation.
[5] G. Chmaycem, M. Jazar, R. Monneau, in preparation.
[6] Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9), Volume 81 (2002), pp. 847-875
[7] Entropic methods for the study of the long time behavior of kinetic equations, Transp. Theory Stat. Phys., Volume 30 (2001) no. 2, 3, pp. 155-168
[8] The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ. Equ., Volume 26 (2001) no. 1–2, pp. 101-174
[9] Continuity of solutions of a singular parabolic equation, Nonlinear Anal., Volume 7 (1983), pp. 387-409
[10] The porous medium equation: new contractivity results, Progr. Nonlinear Differential Equations Appl., Volume 63 (2005), pp. 433-451
[11] Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and Its Applications, 2006
[12] The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs, Clarendon Press, Oxford, UK, 2007
Cité par Sources :