Functional analysis/Algebraic geometry
Noncommutative affine spaces and Lie-complete rings
[Espaces affines non commutatifs et anneaux de Lie complets]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 149-153.

Dans cette note, nous étudions la structure des faisceaux des NC-espaces Ancx et des Lie espaces Aliehx, affines (de dimension infinie), et de leur perturbations nilpotentes Anc,qx et Alieh,qx, respectivement. Nous montrons que les schémas Ancx et Aliehx sont identiques si et seulement si x est un ensemble fini de variables, c'est-à-dire lorsqu'on traite des espaces affines non commutatifs de dimension finie. Pour chaque ouvert (de Zariski) UX=Spec(C[x]), nous obtenons les descriptions précises des algèbres Onc(U), Onc,q(U), Olieh(U) et Olieh,q(U), de fonctions régulières non commutatives sur U, associées aux schémas Ancx, Anc,qx, Aliehx et Alieh,qx, respectivement. Ces résultats pour Onc(U) généralisent la formule de Kapranov dans le cas où la dimension est finie. De plus, nous montrons que tout anneau Lie complet A est plongé dans Γ(X,OA) comme sous-algèbre dense pour la topologie I1-adique associée à l'idéal bilatère I1 engendré par tous les commutateurs de A.

In this paper, we investigate the structure sheaves of an (infinite-dimensional) affine NC-space Ancx, affine Lie-space Aliehx, and their nilpotent perturbations Anc,qx and Alieh,qx, respectively. We prove that the schemes Ancx and Aliehx are identical if and only if x is a finite set of variables, that is, when we deal with finite-dimensional noncommutative affine spaces. For each (Zariski) open subset UX=Spec(C[x]), we obtain the precise descriptions of the algebras Onc(U), Onc,q(U), Olieh,q(U) and Olieh,q(U) of noncommutative regular functions on U associated with the schemes Ancx, Anc,qx, Alieh,qx and Aliehx, respectively. The obtained result for Onc(U) generalizes Kapranov's formula in the finite-dimensional case. Our approach to the matter is based on a noncommutative holomorphic functional calculus in Fréchet algebras.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.10.020
Dosi, Anar 1

1 Middle East Technical University, Northern Cyprus Campus, Guzelyurt, KKTC, Mersin 10, Turkey
@article{CRMATH_2015__353_2_149_0,
     author = {Dosi, Anar},
     title = {Noncommutative affine spaces and {Lie-complete} rings},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {149--153},
     publisher = {Elsevier},
     volume = {353},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crma.2014.10.020},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.10.020/}
}
TY  - JOUR
AU  - Dosi, Anar
TI  - Noncommutative affine spaces and Lie-complete rings
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 149
EP  - 153
VL  - 353
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2014.10.020/
DO  - 10.1016/j.crma.2014.10.020
LA  - en
ID  - CRMATH_2015__353_2_149_0
ER  - 
%0 Journal Article
%A Dosi, Anar
%T Noncommutative affine spaces and Lie-complete rings
%J Comptes Rendus. Mathématique
%D 2015
%P 149-153
%V 353
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2014.10.020/
%R 10.1016/j.crma.2014.10.020
%G en
%F CRMATH_2015__353_2_149_0
Dosi, Anar. Noncommutative affine spaces and Lie-complete rings. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 149-153. doi : 10.1016/j.crma.2014.10.020. http://archive.numdam.org/articles/10.1016/j.crma.2014.10.020/

[1] Dosi, A.A. Noncommutative holomorphic functions in elements of a Lie algebra and noncommutative localizations, Izv. Math. RAN, Volume 73 (2009) no. 06, pp. 77-100

[2] Dosi, A.A. Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations, Algebra Colloq., Volume 17 (2010) no. Spec. 1, pp. 749-788

[3] Dosi, A.A. Taylor functional calculus for supernilpotent Lie algebra of operators, J. Oper. Theory, Volume 63 (2010) no. 1, pp. 101-126

[4] Dosi, A.A. Taylor spectrum and transversality for a Heisenberg algebra of operators, Mat. Sb., Volume 201 (2010) no. 3, pp. 39-62

[5] Dosiev, A.A. Algebras of power series of elements of a Lie algebra and the Slodkowski spectra, J. Math. Sci., Volume 124 (2004) no. 2, pp. 4886-4908 (translated from Zapiski Nauchnykh Seminarov POMI)

[6] Dosiev, A.A. Cartan–Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems, J. Funct. Anal., Volume 230 (2006) no. 2, pp. 446-493

[7] Dosiev, A.A. Local left invertibility for operator tuples and noncommutative localizations, J. K-Theory, Volume 4 (2009) no. 1, pp. 163-191

[8] Etingof, P.; Kim, J.; Ma, X. On universal Lie nilpotent associative algebras, J. Algebra, Volume 321 (2009) no. 2, pp. 697-703

[9] Feigin, B.; Shoiket, B. On [A,A]/[A,[A,A]] and a Wn-action on the consecutive commutators of free associative algebra, Math. Res. Lett., Volume 14 (2007) no. 5–6, pp. 781-795

[10] Grothendieck, A. Éléments de géométrie algébrique, I. Le langage des schémas, Publ. Math. Inst. Hautes Études Sci., Volume 4 (1960), pp. 5-228

[11] Hartshorne, R. (Graduate Texts in Mathematics), Volume vol. 52, Springer Verlag (1977), p. 496

[12] Kapranov, M. Noncommutative geometry based on commutator expansions, J. Reine Angew. Math., Volume 505 (1998), pp. 73-118

[13] Rosenberg, A.L. Noncommutative Algebraic Geometry and Representation of Quantum Groups, Kluwer Academic Publishers, 1995

[14] Smoktunowicz, A. A simple nil ring exists, Commun. Algebra, Volume 30 (2002) no. 1, pp. 27-59

[15] Van Oystaeyen, F.; Verschoren, A.H. Non-Commutative Algebraic Geometry, Lecture Notes in Mathematics, vol. 887, Springer-Verlag, Berlin, 1981

Cité par Sources :