Dans cette note, nous étudions la structure des faisceaux des NC-espaces et des Lie espaces , affines (de dimension infinie), et de leur perturbations nilpotentes et , respectivement. Nous montrons que les schémas et sont identiques si et seulement si x est un ensemble fini de variables, c'est-à-dire lorsqu'on traite des espaces affines non commutatifs de dimension finie. Pour chaque ouvert (de Zariski) , nous obtenons les descriptions précises des algèbres , , et , de fonctions régulières non commutatives sur U, associées aux schémas , , et , respectivement. Ces résultats pour généralisent la formule de Kapranov dans le cas où la dimension est finie. De plus, nous montrons que tout anneau Lie complet A est plongé dans comme sous-algèbre dense pour la topologie -adique associée à l'idéal bilatère engendré par tous les commutateurs de A.
In this paper, we investigate the structure sheaves of an (infinite-dimensional) affine NC-space , affine Lie-space , and their nilpotent perturbations and , respectively. We prove that the schemes and are identical if and only if x is a finite set of variables, that is, when we deal with finite-dimensional noncommutative affine spaces. For each (Zariski) open subset , we obtain the precise descriptions of the algebras , , and of noncommutative regular functions on U associated with the schemes , , and , respectively. The obtained result for generalizes Kapranov's formula in the finite-dimensional case. Our approach to the matter is based on a noncommutative holomorphic functional calculus in Fréchet algebras.
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_149_0, author = {Dosi, Anar}, title = {Noncommutative affine spaces and {Lie-complete} rings}, journal = {Comptes Rendus. Math\'ematique}, pages = {149--153}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.10.020}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.10.020/} }
TY - JOUR AU - Dosi, Anar TI - Noncommutative affine spaces and Lie-complete rings JO - Comptes Rendus. Mathématique PY - 2015 SP - 149 EP - 153 VL - 353 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2014.10.020/ DO - 10.1016/j.crma.2014.10.020 LA - en ID - CRMATH_2015__353_2_149_0 ER -
Dosi, Anar. Noncommutative affine spaces and Lie-complete rings. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 149-153. doi : 10.1016/j.crma.2014.10.020. http://archive.numdam.org/articles/10.1016/j.crma.2014.10.020/
[1] Noncommutative holomorphic functions in elements of a Lie algebra and noncommutative localizations, Izv. Math. RAN, Volume 73 (2009) no. 06, pp. 77-100
[2] Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations, Algebra Colloq., Volume 17 (2010) no. Spec. 1, pp. 749-788
[3] Taylor functional calculus for supernilpotent Lie algebra of operators, J. Oper. Theory, Volume 63 (2010) no. 1, pp. 101-126
[4] Taylor spectrum and transversality for a Heisenberg algebra of operators, Mat. Sb., Volume 201 (2010) no. 3, pp. 39-62
[5] Algebras of power series of elements of a Lie algebra and the Slodkowski spectra, J. Math. Sci., Volume 124 (2004) no. 2, pp. 4886-4908 (translated from Zapiski Nauchnykh Seminarov POMI)
[6] Cartan–Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems, J. Funct. Anal., Volume 230 (2006) no. 2, pp. 446-493
[7] Local left invertibility for operator tuples and noncommutative localizations, J. K-Theory, Volume 4 (2009) no. 1, pp. 163-191
[8] On universal Lie nilpotent associative algebras, J. Algebra, Volume 321 (2009) no. 2, pp. 697-703
[9] On and a -action on the consecutive commutators of free associative algebra, Math. Res. Lett., Volume 14 (2007) no. 5–6, pp. 781-795
[10] Éléments de géométrie algébrique, I. Le langage des schémas, Publ. Math. Inst. Hautes Études Sci., Volume 4 (1960), pp. 5-228
[11] (Graduate Texts in Mathematics), Volume vol. 52, Springer Verlag (1977), p. 496
[12] Noncommutative geometry based on commutator expansions, J. Reine Angew. Math., Volume 505 (1998), pp. 73-118
[13] Noncommutative Algebraic Geometry and Representation of Quantum Groups, Kluwer Academic Publishers, 1995
[14] A simple nil ring exists, Commun. Algebra, Volume 30 (2002) no. 1, pp. 27-59
[15] Non-Commutative Algebraic Geometry, Lecture Notes in Mathematics, vol. 887, Springer-Verlag, Berlin, 1981
Cité par Sources :