Complex analysis
The weighted log canonical thresholds of toric plurisubharmonic functions
[Seuils log canoniques pondérés des fonctions plurisousharmoniques toriques]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 127-131.

Dans cet article, nous calculons les seuils log canoniques pondérés des fonctions plurisous-harmoniques toriques, c'est-à-dire s'exprimant comme des fonctions convexes croissantes des logarithmes des modules de leurs arguments complexes.

In this article, we compute the weighted log canonical thresholds of toric plurisubharmonic functions, i.e. convex increasing functions of the logarithms of the absolute values of their complex arguments.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.11.005
Hiep, Pham Hoang 1 ; Tung, Trinh 2

1 Department of Mathematics, Hanoi National University of Education, Viet Nam
2 Department of Mathematics, Hanoi University of Sciences, Viet Nam
@article{CRMATH_2015__353_2_127_0,
     author = {Hiep, Pham Hoang and Tung, Trinh},
     title = {The weighted log canonical thresholds of toric plurisubharmonic functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {127--131},
     publisher = {Elsevier},
     volume = {353},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crma.2014.11.005},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.11.005/}
}
TY  - JOUR
AU  - Hiep, Pham Hoang
AU  - Tung, Trinh
TI  - The weighted log canonical thresholds of toric plurisubharmonic functions
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 127
EP  - 131
VL  - 353
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2014.11.005/
DO  - 10.1016/j.crma.2014.11.005
LA  - en
ID  - CRMATH_2015__353_2_127_0
ER  - 
%0 Journal Article
%A Hiep, Pham Hoang
%A Tung, Trinh
%T The weighted log canonical thresholds of toric plurisubharmonic functions
%J Comptes Rendus. Mathématique
%D 2015
%P 127-131
%V 353
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2014.11.005/
%R 10.1016/j.crma.2014.11.005
%G en
%F CRMATH_2015__353_2_127_0
Hiep, Pham Hoang; Tung, Trinh. The weighted log canonical thresholds of toric plurisubharmonic functions. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 127-131. doi : 10.1016/j.crma.2014.11.005. http://archive.numdam.org/articles/10.1016/j.crma.2014.11.005/

[1] Berndtsson, B. The openness conjecture and complex Brunn–Minkowski inequalities, Proceedings of Abel Symposium 2013, 2014 (in press) | arXiv

[2] J.-P. Demailly, Monge–Ampère operators, Lelong numbers and intersection theory, in: V. Ancona, A. Silva (Eds.), Complex Analysis and Geometry, in: University Series in Mathematics, Plenum Press, New York, 1993.

[3] Demailly, J.-P. Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/demailly/books.html

[4] de Fernex, T.; Ein, L.; Mustaţǎ, M. Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett., Volume 10 (2003), pp. 219-236

[5] Demailly, J.-P.; Pham Hoang Hiep A sharp lower bound for the log canonical threshold, Acta Math., Volume 212 (2014), pp. 1-9

[6] Demailly, J.-P.; Kollár, J. Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001), pp. 525-556

[7] Jonsson, M.; Mustaţǎ, M. Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier, Volume 62 (2012), pp. 2145-2209

[8] Nadel, A. Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Ann. Math., Volume 132 (1990), pp. 549-596

[9] Pham Hoang Hiep A comparison principle for the log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 441-443

[10] Pham Hoang Hiep The weighted log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 283-288

[11] Howald, J.A. Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 2665-2671

[12] Kiselman, C.O. Attenuating the singularities of plurisubharmonic functions, Ann. Pol. Math., Volume 60 (1994), pp. 173-197

[13] Skoda, H. Sous-ensembles analytiques d'ordre fini ou infini dans Cn, Bull. Soc. Math. Fr., Volume 100 (1972), pp. 353-408

Cité par Sources :