L'objet principal de cet article est de calculer explicitement les blocs de Jordan d'ordre 2 pour la valeur propre
The main purpose of this paper is to explicitly calculate the Jordan blocks of size 2 for the eigenvalue
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_161_0, author = {Mart{\'\i}n-Morales, Jorge}, title = {2-Jordan blocks for the eigenvalue $ \lambda =1$ of {Yomdin{\textendash}L\^e} surface singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {161--165}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.11.006}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.11.006/} }
TY - JOUR AU - Martín-Morales, Jorge TI - 2-Jordan blocks for the eigenvalue $ \lambda =1$ of Yomdin–Lê surface singularities JO - Comptes Rendus. Mathématique PY - 2015 SP - 161 EP - 165 VL - 353 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.11.006/ DO - 10.1016/j.crma.2014.11.006 LA - en ID - CRMATH_2015__353_2_161_0 ER -
%0 Journal Article %A Martín-Morales, Jorge %T 2-Jordan blocks for the eigenvalue $ \lambda =1$ of Yomdin–Lê surface singularities %J Comptes Rendus. Mathématique %D 2015 %P 161-165 %V 353 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.11.006/ %R 10.1016/j.crma.2014.11.006 %G en %F CRMATH_2015__353_2_161_0
Martín-Morales, Jorge. 2-Jordan blocks for the eigenvalue $ \lambda =1$ of Yomdin–Lê surface singularities. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 161-165. doi : 10.1016/j.crma.2014.11.006. https://www.numdam.org/articles/10.1016/j.crma.2014.11.006/
[1] Forme de Jordan de la monodromie des singularités superisolées de surfaces, Mem. Amer. Math. Soc., Volume 109 (1994) no. 525 (x+84)
[2] Superisolated surface singularities, Singularities and Computer Algebra, Lond. Math. Soc. Lect. Note Ser., vol. 324, Cambridge Univ. Press, Cambridge, UK, 2006, pp. 13-39
[3] Intersection theory on abelian-quotient V-surfaces and
[4] Ensembles analytiques complexes avec lieu singulier de dimension un (d'après I.N. Iomdine), Paris, 1976/1977 (Publ. Math. Univ. Paris VII), Volume vol. 7, Univ. Paris-VII, Paris (1980), pp. 87-95
[5] The μ-constant stratum is not smooth, Invent. Math., Volume 90 (1987) no. 1, pp. 139-152
[6] Monodromy zeta function formula for embedded
[7] Embedded
[8] J. Martín-Morales, Semistable reduction of a normal crossing
[9] Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities, Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976, Sijthoff and Noordhoff, 1977, pp. 525-563
[10] On the μ-constant stratum and the V-filtration: an example, Math. Z., Volume 201 (1989) no. 1, pp. 139-144
[11] Complex surfaces with a one-dimensional set of singularities, Sib. Mat. Zh., Volume 15 (1974), pp. 1061-1082 (1181)
Cité par Sources :
☆ The author is partially supported by the Spanish Ministry of Education MTM2010-21740-C02-02, E15 Grupo Consolidado Geometría from the Gobierno de Aragón, FQM-333 from Junta de Andalucía, and PRI-AIBDE-2011-0986 Acción Integrada Hispano-Alemana.