Differential geometry
A gap theorem for minimal submanifolds in Euclidean space
[Un théorème de seuil pour les sous-variétés minimales dans l'espace euclidien]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 173-177.

On démontre que, pour une sous-variété minimale complète Mn immergée dans l'espace euclidien Rn+d, si la seconde forme fondamentale A et la fonction distance intrinsèque r mesurée à partir d'un point fixe satisfont l'inégalité r(x)|A|(x)ε pour tous xM, où ε est une constante positive ne dépendant que de n, alors M est un sous-espace affine de Rn+d.

We prove that for a complete minimal submanifold Mn immersed in the Euclidean space Rn+d, if the second fundamental form A and the intrinsic distance function r from a fixed point satisfy r(x)|A|(x)ε for all xM, where ε is a positive constant depending only on n, then M is an affine subspace of Rn+d.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.11.009
Zhao, Entao 1, 2 ; Cao, Shunjuan 3

1 Center of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, People's Republic of China
2 National Center for Theoretical Sciences, Taipei Office, Taipei, 10617, Taiwan
3 Department of Mathematics, Zhejiang Agricultural and Forestry University, Lin'an, 311300, People's Republic of China
@article{CRMATH_2015__353_2_173_0,
     author = {Zhao, Entao and Cao, Shunjuan},
     title = {A gap theorem for minimal submanifolds in {Euclidean} space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {173--177},
     publisher = {Elsevier},
     volume = {353},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crma.2014.11.009},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.11.009/}
}
TY  - JOUR
AU  - Zhao, Entao
AU  - Cao, Shunjuan
TI  - A gap theorem for minimal submanifolds in Euclidean space
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 173
EP  - 177
VL  - 353
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2014.11.009/
DO  - 10.1016/j.crma.2014.11.009
LA  - en
ID  - CRMATH_2015__353_2_173_0
ER  - 
%0 Journal Article
%A Zhao, Entao
%A Cao, Shunjuan
%T A gap theorem for minimal submanifolds in Euclidean space
%J Comptes Rendus. Mathématique
%D 2015
%P 173-177
%V 353
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2014.11.009/
%R 10.1016/j.crma.2014.11.009
%G en
%F CRMATH_2015__353_2_173_0
Zhao, Entao; Cao, Shunjuan. A gap theorem for minimal submanifolds in Euclidean space. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 173-177. doi : 10.1016/j.crma.2014.11.009. http://archive.numdam.org/articles/10.1016/j.crma.2014.11.009/

[1] Anderson, M.T. The compactification of a minimal submanifold in Euclidean space by the Gauss map, 1984 (IHES/Caltech Preprint, 1986)

[2] Andrews, B.; Baker, C. Mean curvature flow of pinched submanifolds to spheres, J. Differ. Geom., Volume 85 (2010), pp. 357-395

[3] Bray, H. Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differ. Geom., Volume 59 (2001), pp. 177-267

[4] Carron, G. Some old and new results about rigidity of critical metric | arXiv

[5] Chern, S.S.; do Carmo, M.; Kobayashi, S. Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, pp. 59-75

[6] Colding, T.H.; Minicozzi, W.P. Minimal submanifolds, Bull. Lond. Math. Soc., Volume 38 (2006), pp. 353-395

[7] Ding, Q.; Xin, Y.L. On Chern's problem for rigidity of minimal hypersurfaces in the spheres, Adv. Math., Volume 227 (2011), pp. 131-145

[8] Kasue, A. Gap theorems for minimal submanifolds of Euclidean space, J. Math. Soc. Jpn., Volume 38 (1986), pp. 473-492

[9] Kasue, A.; Sugahara, K. Gap theorems for certain submanifolds of Euclidean space and hyperbolic space form II, Katata 1985 (Lect. Notes Math.), Volume vol. 1201 (1985)

[10] Kasue, A.; Sugahara, K. Gap theorems for certain submanifolds of Euclidean spaces and hyperbolic space forms, Osaka J. Math., Volume 24 (1987), pp. 679-704

[11] Lawson, H.B. Local rigidity theorems for minimal hypersurfaces, Ann. Math., Volume 89b (1969), pp. 187-197

[12] Ni, L. Gap theorems for minimal submanifolds in Rn+1, Commun. Anal. Geom., Volume 9 (2001), pp. 641-656

[13] Schoen, R.; Yau, S.T. On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., Volume 65 (1979), pp. 45-76

[14] Schoen, R.; Yau, S.T. Lectures on Differential Geometry, International Press of Boston, 2010

[15] Schoen, R.; Simon, L.; Yau, S.T. Curvature estimates for minimal hypersurfaces, Acta Math., Volume 134 (1975), pp. 276-288

[16] Shiohama, K.; Xu, H.W. The topological sphere theorem for complete submanifolds, Compos. Math., Volume 107 (1997), pp. 221-232

[17] Simons, J. Minimal varieties in Riemannian manifolds, Ann. Math., Volume 88 (1968), pp. 62-105

[18] Xu, H.W.; Gu, J.R. A general gap theorem for submanifolds with parallel mean curvature in Rn+p, Commun. Anal. Geom., Volume 15 (2007), pp. 175-193

[19] Xu, H.W.; Xu, Z.Y. The second pinching theorem for hypersurfaces with constant mean curvature in a sphere, Math. Ann., Volume 356 (2013), pp. 869-883

[20] Yau, S.T. Submanifolds with constant mean curvature I, II, Amer. J. Math., Volume 96 (1974), pp. 346-366

Cité par Sources :