Nous considérons les fonctions d'opérateurs auto-adjoints A et B qui ne commutent pas. De telles fonctions peuvent être définies en termes d'intégrales doubles opératorielles. Pour f dans l'espace de Besov , nous obtenons l'estimation lipschitzienne en norme trace : . Par ailleurs, la condition n'implique pas l'estimation lip-schitzienne en norme opératorielle.
We consider functions of noncommuting self-adjoint operators A and B that can be defined in terms of double operator integrals. We prove that if f belongs to the Besov class , then we have the following Lipschitz-type estimate in the trace norm: . However, the condition does not imply the Lipschitz-type estimate in the operator norm.
Accepté le :
Publié le :
@article{CRMATH_2015__353_3_209_0, author = {Aleksandrov, Aleksei and Nazarov, Fedor and Peller, Vladimir}, title = {Functions of perturbed noncommuting self-adjoint operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {209--214}, publisher = {Elsevier}, volume = {353}, number = {3}, year = {2015}, doi = {10.1016/j.crma.2014.12.005}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.12.005/} }
TY - JOUR AU - Aleksandrov, Aleksei AU - Nazarov, Fedor AU - Peller, Vladimir TI - Functions of perturbed noncommuting self-adjoint operators JO - Comptes Rendus. Mathématique PY - 2015 SP - 209 EP - 214 VL - 353 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2014.12.005/ DO - 10.1016/j.crma.2014.12.005 LA - en ID - CRMATH_2015__353_3_209_0 ER -
%0 Journal Article %A Aleksandrov, Aleksei %A Nazarov, Fedor %A Peller, Vladimir %T Functions of perturbed noncommuting self-adjoint operators %J Comptes Rendus. Mathématique %D 2015 %P 209-214 %V 353 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2014.12.005/ %R 10.1016/j.crma.2014.12.005 %G en %F CRMATH_2015__353_3_209_0
Aleksandrov, Aleksei; Nazarov, Fedor; Peller, Vladimir. Functions of perturbed noncommuting self-adjoint operators. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 209-214. doi : 10.1016/j.crma.2014.12.005. http://archive.numdam.org/articles/10.1016/j.crma.2014.12.005/
[1] Operator Hölder–Zygmund functions, Adv. Math., Volume 224 (2010), pp. 910-966
[2] Functions of normal operators under perturbations, Adv. Math., Volume 226 (2011), pp. 5216-5251
[3] The connection of the Kantorovich–Rubinshtein metric for spectral resolutions of selfadjoint operators with functions of operators, Vestn. Leningr. Univ., Volume 19 (1968), pp. 94-97 (in Russian)
[4] Multidimensional operator multipliers, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 4683-4720
[5] Functions of n-tuples of commuting self-adjoint operators, J. Funct. Anal., Volume 266 (2014), pp. 5398-5428
[6] New Thoughts on Besov Spaces, Duke Univ. Press, Durham, NC, USA, 1976
[7] Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funkc. Anal. Prilozh., Volume 19 (1985) no. 2, pp. 37-51 (in Russian). English transl.: Funct. Anal. Appl., 19, 1985, pp. 111-123
[8] Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and Partial Differential Equations, Lect. Notes Pure Appl. Math., vol. 122, Marcel Dekker, New York, 1990, pp. 529-544
[9] Hankel Operators and Their Applications, Springer-Verlag, New York, 2003
[10] Multiple operator integrals and higher operator derivatives, J. Funct. Anal., Volume 233 (2006), pp. 515-544
[11] Introduction to Operator Space Theory, Lond. Math. Soc. Lect. Note Ser., vol. 294, Cambridge University Press, Cambridge, UK, 2003
Cité par Sources :