Number theory/Dynamical systems
On metric Diophantine approximation in matrices and Lie groups
[Approximation diophantienne métrique dans les matrices et les groupes de Lie]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 185-189.

Nous étudions l'exposant diophantien des sous-variétés analytiques de matrices réelles m×n et répondons à certaines questions posées par Beresnevich, Kleinbock et Margulis. Nous identifions une famille d'obstructions algébriques à l'extrémalité d'une telle sous-variété, et donnons une formule pour l'exposant lorsque celle-ci est définie sur Q. Enfin, nous appliquons ces résultats à la détermination de l'exposant diophantien des groupes de Lie nilpotents rationnels.

We study the Diophantine exponent of analytic submanifolds of m×n real matrices, answering questions of Beresnevich, Kleinbock, and Margulis. We identify a family of algebraic obstructions to the extremality of such a submanifold, and give a formula for the exponent when the submanifold is algebraic and defined over Q. We then apply these results to the determination of the Diophantine exponent of rational nilpotent Lie groups.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.12.007
Aka, Menny 1 ; Breuillard, Emmanuel 2 ; Rosenzweig, Lior 3 ; de Saxcé, Nicolas 4

1 Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
2 Laboratoire de mathématiques, bâtiment 425, Université Paris-Sud (Paris-11), 91405 Orsay cedex, France
3 Department of Mathematics, KTH, SE-100 44 Stockholm, Sweden
4 LAGA, Institut Galilée, Université Paris-13, 93430 Villetaneuse, France
@article{CRMATH_2015__353_3_185_0,
     author = {Aka, Menny and Breuillard, Emmanuel and Rosenzweig, Lior and de Saxc\'e, Nicolas},
     title = {On metric {Diophantine} approximation in matrices and {Lie} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {185--189},
     publisher = {Elsevier},
     volume = {353},
     number = {3},
     year = {2015},
     doi = {10.1016/j.crma.2014.12.007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.12.007/}
}
TY  - JOUR
AU  - Aka, Menny
AU  - Breuillard, Emmanuel
AU  - Rosenzweig, Lior
AU  - de Saxcé, Nicolas
TI  - On metric Diophantine approximation in matrices and Lie groups
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 185
EP  - 189
VL  - 353
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2014.12.007/
DO  - 10.1016/j.crma.2014.12.007
LA  - en
ID  - CRMATH_2015__353_3_185_0
ER  - 
%0 Journal Article
%A Aka, Menny
%A Breuillard, Emmanuel
%A Rosenzweig, Lior
%A de Saxcé, Nicolas
%T On metric Diophantine approximation in matrices and Lie groups
%J Comptes Rendus. Mathématique
%D 2015
%P 185-189
%V 353
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2014.12.007/
%R 10.1016/j.crma.2014.12.007
%G en
%F CRMATH_2015__353_3_185_0
Aka, Menny; Breuillard, Emmanuel; Rosenzweig, Lior; de Saxcé, Nicolas. On metric Diophantine approximation in matrices and Lie groups. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 185-189. doi : 10.1016/j.crma.2014.12.007. http://archive.numdam.org/articles/10.1016/j.crma.2014.12.007/

[1] Aka, M.; Breuillard, E.; Rosenzweig, L.; de Saxcé, N. Diophantine properties of nilpotent Lie groups, Compos. Math. (2015) (32 pages. Published online: 13 January 2015) | DOI

[2] M. Aka, E. Breuillard, L. Rosenzweig, N. de Saxcé, Metric Diophantine approximation on matrices and Lie groups, in preparation.

[3] Bourgain, J.; Gamburd, A. On the spectral gap for finitely generated subgroups of SU(2), Invent. Math., Volume 171 (2008), pp. 83-121

[4] V. Beresnevich, D. Kleinbock, G. Margulis, Non-planarity and metric Diophantine approximation for systems of linear forms, J. Théor. Nombres Bordeaux, preprint , in press. | arXiv

[5] Dani, S.G. Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., Volume 359 (1985), pp. 55-89

[6] Gamburd, A.; Jakobson, D.; Sarnak, P. Spectra of elements in the group ring of SU(2), J. Eur. Math. Soc., Volume 1 (1999) no. 1, pp. 51-85

[7] Gorodnik, A. Open problems in dynamics and related fields, J. Mod. Dyn., Volume 1 (2007) no. 1, pp. 1-35

[8] Kleinbock, D. Extremal subspaces and their submanifolds, Geom. Funct. Anal., Volume 13 (2003) no. 2, pp. 437-466

[9] Kleinbock, Dmitry An extension of quantitative nondivergence and applications to Diophantine exponents, Trans. Amer. Math. Soc., Volume 360 (2008) no. 12, pp. 6497-6523

[10] Kleinbock, Dmitry An ‘almost all versus no’ dichotomy in homogeneous dynamics and Diophantine approximation, Geom. Dedic., Volume 149 (2010), pp. 205-218

[11] Kleinbock, D.Y.; Margulis, G.A. Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. Math., Volume 148 (1998) no. 1, pp. 339-360

[12] Kleinbock, D.; Margulis, G.; Wang, J. Metric Diophantine approximation for systems of linear forms via dynamics, Int. J. Number Theory, Volume 6 (2010) no. 5, pp. 1139-1168

[13] Margulis, G.A. The action of unipotent groups in a lattice space, Mat. Sb., Volume 86 (1971) no. 128, pp. 552-556

Cité par Sources :