Mathematical physics
Integrability of the periodic Kostant–Toda flow on matrix loops of level k
[Intégrabilité du flot périodique de Kostant–Toda sur des boucles de matrices de niveau k]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 363-367.

Dans cette note, nous annonçons des résultats sur l'intégrabilité du flot périodique de Kostant–Toda sur des boucles de matrices de niveau k dans sl(n,C).

In this note, we announce results on the Liouville integrability of the periodic Kostant–Toda flow on loops of matrices in sl(n,C) of level k.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.006
Li, Luen-Chau 1 ; Nie, Zhaohu 2

1 Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
2 Department of Mathematics and Statistics, Utah State University, Logan, UT 84322-3900, USA
@article{CRMATH_2015__353_4_363_0,
     author = {Li, Luen-Chau and Nie, Zhaohu},
     title = {Integrability of the periodic {Kostant{\textendash}Toda} flow on matrix loops of level \protect\emph{k}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {363--367},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.006},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.006/}
}
TY  - JOUR
AU  - Li, Luen-Chau
AU  - Nie, Zhaohu
TI  - Integrability of the periodic Kostant–Toda flow on matrix loops of level k
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 363
EP  - 367
VL  - 353
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.006/
DO  - 10.1016/j.crma.2015.01.006
LA  - en
ID  - CRMATH_2015__353_4_363_0
ER  - 
%0 Journal Article
%A Li, Luen-Chau
%A Nie, Zhaohu
%T Integrability of the periodic Kostant–Toda flow on matrix loops of level k
%J Comptes Rendus. Mathématique
%D 2015
%P 363-367
%V 353
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.006/
%R 10.1016/j.crma.2015.01.006
%G en
%F CRMATH_2015__353_4_363_0
Li, Luen-Chau; Nie, Zhaohu. Integrability of the periodic Kostant–Toda flow on matrix loops of level k. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 363-367. doi : 10.1016/j.crma.2015.01.006. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.006/

[1] Adler, A. On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–deVries-type equations, Invent. Math., Volume 50 (1979), pp. 219-248

[2] Adler, A.; van Moerbeke, P.; Vanhaecke, P. Algebraic Integrability, Painleve Geometry and Lie Algebras, Ergebnisse der Mathematik, Springer-Verlag, Berlin, 2004

[3] Baker, H.F. Examples of applications of Newton's polygon to the theory of singular points of algebraic functions, Trans. Cambr. Philos. Soc., Volume 15 (1893), pp. 403-450

[4] Ben Abdeljelil, K. The integrability of the periodic full Kostant–Toda lattice on a simple Lie algebra, J. Lie Theory, Volume 21 (2011), pp. 929-960

[5] Deift, P.; Li, L.C.; Nanda, T.; Tomei, C. The Toda flow on a generic orbit is integrable, Commun. Pure Appl. Math., Volume 39 (1986), pp. 183-232

[6] Deift, P.; Li, L.C.; Tomei, C. Matrix factorizations and integrable systems, Commun. Pure Appl. Math., Volume 42 (1989), pp. 443-521

[7] Ercolani, N.; Flaschka, H.; Singer, S. The geometry of the full Kostant–Toda lattice, Luminy, 1991 (Progr. Math.), Volume vol. 115, Birkhäuser Boston, Boston, MA (1993), pp. 181-225

[8] Flaschka, H. The Toda lattice, II: existence of integrals, Phys. Rev. B, Volume 9 (1974), pp. 1924-1925

[9] Gekhtman, M.; Shapiro, M. Noncommutative and commutative integrability of generic Toda flows in simple Lie algebras, Commun. Pure Appl. Math., Volume 52 (1999), pp. 53-84

[10] Khovanskii, A.G. Newton polyhedra and the genus of complete intersections, Funct. Anal. Appl., Volume 12 (1978), pp. 38-46

[11] Kostant, B. The solution to a generalized Toda lattice and representation theory, Adv. Math., Volume 34 (1979), pp. 195-338

[12] Semenov-Tian-Shansky, M. What is a classical r-matrix?, Funct. Anal. Appl., Volume 17 (1983), pp. 259-272

[13] van Moerbeke, P.; Mumford, D. The spectrum of difference operators and algebraic curves, Acta Math., Volume 143 (1979), pp. 93-154

Cité par Sources :