[Équations différentielles et aux différences à retard pour des modèles de dynamique des cellules souches hématopoïétiques]
Toutes les cellules sanguines sont produites dans la moelle osseuse lors de l'hématopoïèse à partir d'une petite population de cellules appelées cellules souches hématopoïétiques (CSHs). Les CSHs ont la capacité de s'auto-renouveler et également de se différencier en tous types de cellules sanguines. Le sytème mathématique que nous considérons pour modéliser ces populations de CSHs est un système de deux équations aux dérivées partielles structurées en âge. Par intégration suivant les caractéristiques, le modèle est réduit à un système composé d'une équation différentielle et d'une équation aux différences à retard. Nous étudions le comportement asymptotique des états d'équilibre et l'existence d'une bifurcation de Hopf. Nous concluons notre travail par des simulations numériques.
All functional blood cells are generated in the bone marrow through hematopoiesis from a small population of cells called hematopoietic stem cells (HSCs). HSCs have the capacity to self-renew and also the capacity to differentiate into any types of blood cells. We consider a system of two age-structured partial differential equations, describing the evolution of the HSC population. By integrating this system over the age and using the characteristics method, we reduce it to a system composed of a differential equation and a delay difference equation. We investigate the asymptotic stability of steady states and the existence of a Hopf bifurcation. We conclude our work by numerical simulations.
Accepté le :
Publié le :
@article{CRMATH_2015__353_4_303_0, author = {Adimy, Mostafa and Chekroun, Abdennasser and Touaoula, Tarik-Mohamed}, title = {A delay differential-difference system of hematopoietic stem cell dynamics}, journal = {Comptes Rendus. Math\'ematique}, pages = {303--307}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.018}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.018/} }
TY - JOUR AU - Adimy, Mostafa AU - Chekroun, Abdennasser AU - Touaoula, Tarik-Mohamed TI - A delay differential-difference system of hematopoietic stem cell dynamics JO - Comptes Rendus. Mathématique PY - 2015 SP - 303 EP - 307 VL - 353 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.018/ DO - 10.1016/j.crma.2015.01.018 LA - en ID - CRMATH_2015__353_4_303_0 ER -
%0 Journal Article %A Adimy, Mostafa %A Chekroun, Abdennasser %A Touaoula, Tarik-Mohamed %T A delay differential-difference system of hematopoietic stem cell dynamics %J Comptes Rendus. Mathématique %D 2015 %P 303-307 %V 353 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.018/ %R 10.1016/j.crma.2015.01.018 %G en %F CRMATH_2015__353_4_303_0
Adimy, Mostafa; Chekroun, Abdennasser; Touaoula, Tarik-Mohamed. A delay differential-difference system of hematopoietic stem cell dynamics. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 303-307. doi : 10.1016/j.crma.2015.01.018. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.018/
[1] A mathematical model of multistage hematopoietic cell lineages, Discrete Contin. Dyn. Syst., Ser. B, Volume 19 (2014), pp. 1-26
[2] Global stability of a partial differential equation with distributed delay due to cellular replication, Nonlinear Anal., Theory Methods Appl., Volume 54 (2003), pp. 1469-1491
[3] Modelling and asymptotic stability of a growth factor-dependent stem cells dynamics model with distributed delay, Discrete Contin. Dyn. Syst., Ser. B, Volume 8 (2007), pp. 19-38
[4] Stability and Hopf bifurcation for a cell population model with state-dependent delay, SIAM J. Appl. Math., Volume 70 (2010), pp. 1611-1633
[5] A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math., Volume 65 (2005), pp. 1328-1352
[6] Oscillations in cyclical neutropenia: new evidence based on mathematical modeling, J. Theor. Biol., Volume 223 (2003), pp. 283-298
[7] Bifurcations in a white-blood-cell production model, C. R. Biologies, Volume 327 (2004), pp. 201-210
[8] Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment, Exp. Hematol., Volume 25 (1997), pp. 445-453
[9] Lyapunov–Krasovskii functional for uniform stability of coupled differential–functional equations, Automatica, Volume 45 (2009), pp. 798-804
[10] Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993
[11] Regulation of hematopoietic stem cell fate, Oncogene, Volume 21 (2002), pp. 3262-3269
[12] Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, CA, USA, 1993
[13] Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, Volume 51 (1978), pp. 941-956
[14] Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation, J. Exp. Med., Volume 208 (2011), pp. 273-284
Cité par Sources :