Differential geometry
The Atiyah class of a dg-vector bundle
[Classe d'Atiyah d'un fibré vectoriel différentiel gradué]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 357-362.

Nous introduisons les notions de classe d'Atiyah et de classe de Todd d'un fibré différentiel gradué relatives à un algébroïde de Lie différentiel gradué. Nous prouvons que l'espace des champs de vecteurs sur une variété différentielle graduée admet une structure d'algèbre L[1] ayant la dérivée de Lie par rapport au champ de vecteur cohomologique pour crochet unaire et le cocycle d'Atiyah associé à une connexion affine sans torsion pour crochet binaire.

We introduce the notions of Atiyah class and Todd class of a differential graded vector bundle with respect to a differential graded Lie algebroid. We prove that the space of vector fields X(M) on a dg-manifold M with homological vector field Q admits a structure of L[1]-algebra with the Lie derivative LQ as unary bracket λ1, and the Atiyah cocycle AtM corresponding to a torsion-free affine connection as binary bracket λ2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.019
Mehta, Rajan Amit 1 ; Stiénon, Mathieu 2 ; Xu, Ping 2

1 Department of Mathematics and Statistics, Smith College, 44 College Lane, Northampton, MA 01063, USA
2 Department of Mathematics, Penn State University, 109 McAllister Building, University Park, PA 16801, USA
@article{CRMATH_2015__353_4_357_0,
     author = {Mehta, Rajan Amit and Sti\'enon, Mathieu and Xu, Ping},
     title = {The {Atiyah} class of a dg-vector bundle},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {357--362},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.019},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.019/}
}
TY  - JOUR
AU  - Mehta, Rajan Amit
AU  - Stiénon, Mathieu
AU  - Xu, Ping
TI  - The Atiyah class of a dg-vector bundle
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 357
EP  - 362
VL  - 353
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.019/
DO  - 10.1016/j.crma.2015.01.019
LA  - en
ID  - CRMATH_2015__353_4_357_0
ER  - 
%0 Journal Article
%A Mehta, Rajan Amit
%A Stiénon, Mathieu
%A Xu, Ping
%T The Atiyah class of a dg-vector bundle
%J Comptes Rendus. Mathématique
%D 2015
%P 357-362
%V 353
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.019/
%R 10.1016/j.crma.2015.01.019
%G en
%F CRMATH_2015__353_4_357_0
Mehta, Rajan Amit; Stiénon, Mathieu; Xu, Ping. The Atiyah class of a dg-vector bundle. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 357-362. doi : 10.1016/j.crma.2015.01.019. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.019/

[1] Costello, Kevin A geometric construction of the Witten genus, I, Proceedings of the International Congress of Mathematicians, vol. II, Hindustan Book Agency, New Delhi, 2010, pp. 942-959 (MR 2827826)

[2] Gracia-Saz, Alfonso; Mehta, Rajan Amit Lie algebroid structures on double vector bundles and representation theory of Lie algebroids, Adv. Math., Volume 223 (2010) no. 4, pp. 1236-1275 MR 2581370 (2011j:53162)

[3] Kapranov, Mikhail Rozansky–Witten invariants via Atiyah classes, Compos. Math., Volume 115 (1999) no. 1, pp. 71-113 MR 1671737 (2000h:57056)

[4] Kotov, A.; Strobl, T. Characteristic classes associated to Q-bundles, 2007 | arXiv

[5] Laurent-Gengoux, C.; Stiénon, M.; Xu, P. Kapranov dg-manifolds and Poincaré–Birkhoff–Witt isomorphisms, 2014 | arXiv

[6] Mackenzie, K.C.H. Double Lie algebroids and the double of a Lie bialgebroid, 1998 | arXiv

[7] Mackenzie, K.C.H. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids, Electron. Res. Announc. Amer. Math. Soc., Volume 4 (1998), pp. 74-87 (electronic), MR1650045 (2000c:58035)

[8] Mackenzie, Kirill C.H. Ehresmann doubles and Drinfel'd doubles for Lie algebroids and Lie bialgebroids, J. Reine Angew. Math., Volume 658 (2011), pp. 193-245 MR2831518 (2012g:53169)

[9] Manin, Yuri I. Gauge Field Theory and Complex Geometry, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 1997 translated from the 1984 Russian original by N. Koblitz and J.R. King, with an appendix by Sergei Merkulov, MR 1632008 (99e:32001)

[10] Mehta, Rajan Amit Q-algebroids and their cohomology, J. Symplectic Geom., Volume 7 (2009) no. 3, pp. 263-293 MR 2534186 (2011b:58040)

[11] Shoikhet, Boris On the Duflo formula for L-algebras and Q-manifolds, 1998 | arXiv

[12] Vaĭntrob, Arkady Yu. Lie algebroids and homological vector fields, Usp. Mat. Nauk, Volume 52 (1997) no. 2(314), pp. 161-162 (MR 1480150)

Cité par Sources :

Research partially supported by NSF grant DMS1406668 and NSA grant H98230-14-1-0153.