Nous introduisons les notions de classe d'Atiyah et de classe de Todd d'un fibré différentiel gradué relatives à un algébroïde de Lie différentiel gradué. Nous prouvons que l'espace des champs de vecteurs sur une variété différentielle graduée admet une structure d'algèbre ayant la dérivée de Lie par rapport au champ de vecteur cohomologique pour crochet unaire et le cocycle d'Atiyah associé à une connexion affine sans torsion pour crochet binaire.
We introduce the notions of Atiyah class and Todd class of a differential graded vector bundle with respect to a differential graded Lie algebroid. We prove that the space of vector fields on a dg-manifold with homological vector field Q admits a structure of -algebra with the Lie derivative as unary bracket , and the Atiyah cocycle corresponding to a torsion-free affine connection as binary bracket .
Accepté le :
Publié le :
@article{CRMATH_2015__353_4_357_0, author = {Mehta, Rajan Amit and Sti\'enon, Mathieu and Xu, Ping}, title = {The {Atiyah} class of a dg-vector bundle}, journal = {Comptes Rendus. Math\'ematique}, pages = {357--362}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.019}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.019/} }
TY - JOUR AU - Mehta, Rajan Amit AU - Stiénon, Mathieu AU - Xu, Ping TI - The Atiyah class of a dg-vector bundle JO - Comptes Rendus. Mathématique PY - 2015 SP - 357 EP - 362 VL - 353 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.019/ DO - 10.1016/j.crma.2015.01.019 LA - en ID - CRMATH_2015__353_4_357_0 ER -
%0 Journal Article %A Mehta, Rajan Amit %A Stiénon, Mathieu %A Xu, Ping %T The Atiyah class of a dg-vector bundle %J Comptes Rendus. Mathématique %D 2015 %P 357-362 %V 353 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.019/ %R 10.1016/j.crma.2015.01.019 %G en %F CRMATH_2015__353_4_357_0
Mehta, Rajan Amit; Stiénon, Mathieu; Xu, Ping. The Atiyah class of a dg-vector bundle. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 357-362. doi : 10.1016/j.crma.2015.01.019. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.019/
[1] A geometric construction of the Witten genus, I, Proceedings of the International Congress of Mathematicians, vol. II, Hindustan Book Agency, New Delhi, 2010, pp. 942-959 (MR 2827826)
[2] Lie algebroid structures on double vector bundles and representation theory of Lie algebroids, Adv. Math., Volume 223 (2010) no. 4, pp. 1236-1275 MR 2581370 (2011j:53162)
[3] Rozansky–Witten invariants via Atiyah classes, Compos. Math., Volume 115 (1999) no. 1, pp. 71-113 MR 1671737 (2000h:57056)
[4] Characteristic classes associated to Q-bundles, 2007 | arXiv
[5] Kapranov dg-manifolds and Poincaré–Birkhoff–Witt isomorphisms, 2014 | arXiv
[6] Double Lie algebroids and the double of a Lie bialgebroid, 1998 | arXiv
[7] Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids, Electron. Res. Announc. Amer. Math. Soc., Volume 4 (1998), pp. 74-87 (electronic), MR1650045 (2000c:58035)
[8] Ehresmann doubles and Drinfel'd doubles for Lie algebroids and Lie bialgebroids, J. Reine Angew. Math., Volume 658 (2011), pp. 193-245 MR2831518 (2012g:53169)
[9] Gauge Field Theory and Complex Geometry, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 1997 translated from the 1984 Russian original by N. Koblitz and J.R. King, with an appendix by Sergei Merkulov, MR 1632008 (99e:32001)
[10] Q-algebroids and their cohomology, J. Symplectic Geom., Volume 7 (2009) no. 3, pp. 263-293 MR 2534186 (2011b:58040)
[11] On the Duflo formula for -algebras and Q-manifolds, 1998 | arXiv
[12] Lie algebroids and homological vector fields, Usp. Mat. Nauk, Volume 52 (1997) no. 2(314), pp. 161-162 (MR 1480150)
Cité par Sources :
☆ Research partially supported by NSF grant DMS1406668 and NSA grant H98230-14-1-0153.