Lie algebras/Topology
Dirac families for loop groups as matrix factorizations
[Familles d'opérateurs de Dirac pour les groupes de lacets et factorisations en matrices]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 415-419.

On identifie la catégorie des représentations intégrables de plus bas poids du groupe de lacets LG d'un groupe de Lie compact G avec la catégorie des complexes de Fredholm tordus, courbés et équivariants pour conjugaison sur le groupe G : plus précisément, les factorisations en matrices d'un potentiel provenant de la rotation des lacets dans LG. Cette construction relève l'isomorphisme de K-groupes de [3–5] en une équivalence de catégories. La construction fait appel aux familles d'opérateurs de Dirac.

We identify the category of integrable lowest-weight representations of the loop group LG of a compact Lie group G with the category of twisted, conjugation-equivariant curved Fredholm complexes on the group G: namely, the twisted, equivariant matrix factorizations of a super-potential built from the loop rotation action on LG. This lifts the isomorphism of K-groups of [3–5] to an equivalence of categories. The construction uses families of Dirac operators.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.02.011
Freed, Daniel S. 1 ; Teleman, Constantin 2

1 UT Austin, Mathematics Department, RLM 8.100, 2515 Speedway C1200, Austin, TX 78712, USA
2 UC Berkeley, Mathematics Department, 970 Evans Hall #3840, Berkeley, CA 94720, USA
@article{CRMATH_2015__353_5_415_0,
     author = {Freed, Daniel S. and Teleman, Constantin},
     title = {Dirac families for loop groups as matrix factorizations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {415--419},
     publisher = {Elsevier},
     volume = {353},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crma.2015.02.011},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.02.011/}
}
TY  - JOUR
AU  - Freed, Daniel S.
AU  - Teleman, Constantin
TI  - Dirac families for loop groups as matrix factorizations
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 415
EP  - 419
VL  - 353
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.02.011/
DO  - 10.1016/j.crma.2015.02.011
LA  - en
ID  - CRMATH_2015__353_5_415_0
ER  - 
%0 Journal Article
%A Freed, Daniel S.
%A Teleman, Constantin
%T Dirac families for loop groups as matrix factorizations
%J Comptes Rendus. Mathématique
%D 2015
%P 415-419
%V 353
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.02.011/
%R 10.1016/j.crma.2015.02.011
%G en
%F CRMATH_2015__353_5_415_0
Freed, Daniel S.; Teleman, Constantin. Dirac families for loop groups as matrix factorizations. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 415-419. doi : 10.1016/j.crma.2015.02.011. http://archive.numdam.org/articles/10.1016/j.crma.2015.02.011/

[1] Baez, J.C.; Stevenson, D.; Crans, A.S.; Schreiber, U. From loop groups to 2-groups, Homology, Homotopy Appl., Volume 9 (2007), pp. 101-135

[2] Freed, D.S.; Hopkins, M.J.; Lurie, J.; Teleman, C. Topological field theories from compact Lie groups, A Celebration of the Mathematical Legacy of Raoul Bott, CRM Proc. Lecture Notes, vol. 50, AMS, 2010, pp. 367-403

[3] Freed, D.S.; Hopkins, M.J.; Teleman, C. Twisted K-theory and loop group representations I, J. Topol., Volume 4 (2011), pp. 737-798

[4] Freed, D.S.; Hopkins, M.J.; Teleman, C. Twisted K-theory and loop group representations II, J. Amer. Math. Soc., Volume 26 (2013), pp. 595-644

[5] Freed, D.S.; Hopkins, M.J.; Teleman, C. Twisted K-theory and loop group representations III, Ann. Math., Volume 174 (2011), pp. 947-1007

[6] Kostant, B. A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J., Volume 100 (1999), pp. 447-501

[7] Landweber, G.D. Multiplets of representations and Kostant's Dirac operator for equal rank loop groups, Duke Math. J., Volume 110 (2001), pp. 121-160

[8] Orlov, D. Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 227-248 Algebr. Geom. Metody, Svyazi i Prilozh., 240–262 (Russian) English translation in Proc. Steklov Inst. Math., 246, 2004

[9] Preygel, A. Thom–Sebastiani and duality for matrix factorizations | arXiv

[10] Pressley, A.; Segal, G.B. Loop Groups, Oxford University Press, 1986

[11] Whitehead, J.H.C. On adding relations to homotopy groups, Ann. Math., Volume 42 (1941), pp. 409-428

Cité par Sources :