Dynamical systems
The C0 general density theorem for geodesic flows
[Le théorème de densité de Pugh C0 pour les flots géodésiques]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 545-549.

Étant donnée une variété riemannienne compacte sans bord, nous démontrons un théorème de densité C0-générique pour les flots géodésiques et, plus précisément, nous prouvons qu'il existe une partie C0-résiduelle de l'ensemble des flots géodésiques continus, telle que tout flot dans cette partie admet un ensemble dense d'orbites périodiques.

Given a closed Riemannian manifold, we prove the C0-general density theorem for continuous geodesic flows. More precisely, we prove that there exists a residual (in the C0-sense) subset of the continuous geodesic flows such that, in that residual subset, the geodesic flow exhibits dense closed orbits.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.03.012
Bessa, Mário 1 ; Torres, Maria Joana 2

1 CMA-UBI, Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
2 CMAT, Departamento de Matemática e Aplicações, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
@article{CRMATH_2015__353_6_545_0,
     author = {Bessa, M\'ario and Torres, Maria Joana},
     title = {The $ {C}^{0}$ general density theorem for geodesic flows},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {545--549},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     year = {2015},
     doi = {10.1016/j.crma.2015.03.012},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.03.012/}
}
TY  - JOUR
AU  - Bessa, Mário
AU  - Torres, Maria Joana
TI  - The $ {C}^{0}$ general density theorem for geodesic flows
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 545
EP  - 549
VL  - 353
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.03.012/
DO  - 10.1016/j.crma.2015.03.012
LA  - en
ID  - CRMATH_2015__353_6_545_0
ER  - 
%0 Journal Article
%A Bessa, Mário
%A Torres, Maria Joana
%T The $ {C}^{0}$ general density theorem for geodesic flows
%J Comptes Rendus. Mathématique
%D 2015
%P 545-549
%V 353
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.03.012/
%R 10.1016/j.crma.2015.03.012
%G en
%F CRMATH_2015__353_6_545_0
Bessa, Mário; Torres, Maria Joana. The $ {C}^{0}$ general density theorem for geodesic flows. Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 545-549. doi : 10.1016/j.crma.2015.03.012. http://archive.numdam.org/articles/10.1016/j.crma.2015.03.012/

[1] Abraham, R. Bumpy metrics, Proc. Sympos. Pure Math. (Chern, S.S.; Smale, S., eds.), Volume vol. XIV (1970), pp. 1-3

[2] Anosov, D.V. On generic properties of closed geodesics, Math. USSR, Izv., Volume 21 (1983), pp. 1-29

[3] Buhovsky, L.; Seyfaddini, S. Uniqueness of generating Hamiltonians for topological Hamiltonian flows, J. Symplectic Geom., Volume 11 (2013) no. 1, pp. 37-52

[4] Contreras-Barandiarán, G.; Paternain, G.P. Genericity of geodesic flows with positive topological entropy on S2, J. Differ. Geom., Volume 61 (2002) no. 1, pp. 1-49

[5] Daalderop, F.; Fokkink, R. Chaotic homeomorphisms are generic, Topol. Appl., Volume 102 (2000), pp. 297-302

[6] Fort, M.K. Category theorems, Fundam. Math., Volume 42 (1955), pp. 276-288

[7] Coven, E.M.; Madden, J.; Nitecki, Z. A note on generic properties of continuous maps, Ergodic Theory and Dynamical Systems, II, Prog. Math., vol. 21, Birkhäuser, Boston, MA, USA, 1982, pp. 97-101

[8] Hirsch, M.W. Differential Topology, Graduate Texts in Mathematics, vol. 33, Springer, 1976

[9] Hurley, M. On proofs of the C0 general density theorem, Proc. Amer. Math. Soc., Volume 124 (1996) no. 4, pp. 1305-1309

[10] Katok, A.; Hasselblatt, B. Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995

[11] Klingenberg, W.; Takens, F. Generic properties of geodesic flows, Math. Ann., Volume 197 (1972) no. 4, pp. 323-334

[12] Kuratowski, K. Topology, vol. 1, Academic Press, 1966

[13] Müller, S.; Oh, Y.-G. The group of Hamiltonian homeomorphisms and C0-symplectic topology, J. Symplectic Geom., Volume 5 (2007) no. 2, pp. 167-219

[14] Müller, S.; Spaeth, P. Topological contact dynamics III. Uniqueness of the topological Hamiltonian and C0-rigidity of the geodesic flow, 2013 (preprint) | arXiv

[15] Oh, Y.-G. The group of Hamiltonian homeomorphisms and continuous Hamiltonian flows, Symplectic Topology and Measure Preserving Dynamical Systems, Contemp. Math., vol. 512, Amer. Math. Soc., Providence, RI, USA, 2010, pp. 149-177

[16] Palis, J.; de Melo, W. Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York, Berlin, 1982

[17] Palis, J.; Pugh, C.; Shub, M.; Sullivan, D. Genericity theorems in topological dynamics, Dynamical Systems – Warwick 1974, Lecture Notes in Math., vol. 468, Springer, Berlin, 1975, pp. 241-250

[18] Pugh, C. An improved closing lemma and a general density theorem, Amer. J. Math., Volume 89 (1967) no. 4, pp. 1010-1021

[19] Pugh, C.; Robinson, C. The C1 closing lemma, including Hamiltonians, Ergod. Theory Dyn. Syst., Volume 3 (1983), pp. 261-313

[20] Rademacher, H.-B. On a generic property of geodesic flows, Math. Ann., Volume 298 (1994) no. 1, pp. 101-116

[21] Rifford, L. Closing geodesics in C1 topology, J. Differ. Geom., Volume 91 (2012) no. 3, pp. 361-382

[22] Viterbo, C. On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows, Int. Math. Res. Not. (2006) Art. ID 34028, 9 p.; Erratum to: On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows, Int. Math. Res. Not. (2006), Art. ID 38784, 4 p

Cité par Sources :