Cette note vise à déterminer quelles sont les valeurs propres du laplacien sur le tore plat
In this note, we determine, in the case of the Laplacian on the flat two-dimensional torus
Accepté le :
Publié le :
@article{CRMATH_2015__353_6_535_0, author = {L\'ena, Corentin}, title = {Courant-sharp eigenvalues of a two-dimensional torus}, journal = {Comptes Rendus. Math\'ematique}, pages = {535--539}, publisher = {Elsevier}, volume = {353}, number = {6}, year = {2015}, doi = {10.1016/j.crma.2015.03.014}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2015.03.014/} }
TY - JOUR AU - Léna, Corentin TI - Courant-sharp eigenvalues of a two-dimensional torus JO - Comptes Rendus. Mathématique PY - 2015 SP - 535 EP - 539 VL - 353 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2015.03.014/ DO - 10.1016/j.crma.2015.03.014 LA - en ID - CRMATH_2015__353_6_535_0 ER -
Léna, Corentin. Courant-sharp eigenvalues of a two-dimensional torus. Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 535-539. doi : 10.1016/j.crma.2015.03.014. https://www.numdam.org/articles/10.1016/j.crma.2015.03.014/
[1] Inégalités isopérimétriques et applications, SEDP (1981)
[2] Volume des ensembles nodaux des fonctions propres du Laplacien, SEDP, École polytechnique, Palaiseau, France, 1984
[3] Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses, March 2014 (Preprint) | arXiv
[4] Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle, February 2015 (Preprint) | arXiv
[5] Inégalités isopérimétriques et applications, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 513-541
[6] Optimal partitions for eigenvalues, SIAM J. Sci. Comput., Volume 31 (2009–2010), pp. 4100-4114
[7] Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives, Cambridge University Press, Cambridge, UK, 2001
[8] Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke, Nachr. Ges. Göttingen (1923), pp. 81-84
[9] Minimal partitions for anisotropic tori, J. Spectr. Theory, Volume 4 (2014), pp. 221-233
[10] Nodal domains and spectral minimal partitions, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009), pp. 101-138
[11] On spectral minimal partitions: the case of the sphere, Around the research of Vladimir Maz'ya. III, Int. Math. Ser. (N. Y.), vol. 13, 2010, pp. 153-178
[12] Nodal domains in the square—the Neumann case, October 2014 (Preprint) | arXiv
[13] The isoperimetric problem on surfaces, Amer. Math. Monthly, Volume 106 (1999), pp. 430-439
[14] Spectral minimal partitions for a family of tori, March 2015 (Preprint) | arXiv
[15] Courant-sharp eigenvalues of a two-dimensional torus, January 2015 (Preprint) | arXiv
[16] Knotenlinien und Knotengebiete von Eigenfunktionen, Universität Wien, 1989 http://othes.univie.ac.at/34443/ (Diplom Arbeit Unpublished, available at:)
[17] On the number of nodal domains of spherical harmonics, Topology, Volume 35 (1996), pp. 301-321
[18] Remarks on Courant's nodal theorem, Comm. Pure. Appl. Math., Volume 9 (1956), pp. 543-550
[19] Pleijel's nodal theorem for free membranes, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 1021-1024
[20] Counting nodal lines that touch the boundary of an analytic domain, J. Differential Geom., Volume 81 (2009), pp. 649-686
Cité par Sources :